i

Aktuální číslo:

2024/11

Téma měsíce:

Strach

Obálka čísla

Nebezpečné vodní květy

 |  16. 7. 2014
 |  Téma: Voda

Neuvěřitelná přizpůsobivost sinic kdysi umožnila vznik organické hmoty na Zemi. Dnes bychom se přebujelého vodního květu na rybnících a přehradách rádi zbavili. Není to však snadné.

Sinice žijí v každém prostředí po celé Zemi, najdeme je ve fytoplanktonu moří, v krustách na pouštích, v mladém porostu v deštných pralesích i v planktonu věčně zamrzlých antarktických jezer, uvnitř kamenů i na povrchu ledovců. Ve formě mořského pikoplanktonu, tvořeného jednotlivými buňkami menšími než dva mikrometry, produkují značnou část světové produkce kyslíku.

Pro život na Zemi jsou sinice nesmírně důležité, v lidské společnosti však hrají i negativní roli. Jejich obdivuhodná přizpůsobivost jim totiž umožňuje nadprodukci vodního květu v eutrofizovaných (na živiny bohatých) vodách.

Sinice, též cyanobakterie, cyanoprokaryota, jsou nejstaršími fotosyntetizujícími organismy na Zemi. Od nich se odvozuje vznik chloroplastu jako nezastupitelného orgánu zprostředkujícího produkci organické hmoty na Zemi. Obsahují chlorofyl a k němu sadu fykobilinů a karotenoidů, které napomáhají účinnému využití slunečního záření ve fotosyntéze, jejímž produktem je také kyslík. Pro tyto vlastnosti byly sinice donedávna řazeny k rostlinám.

Rozmnožují se pouze nepohlavně – dělením buněk. Žijí buď jako jednotlivé buňky samostatně nebo v koloniích různého tvaru, nebo vytvářejí jednoduchá nebo rozvětvená vlákna. Při své fotosyntetické činnosti vyčerpávají z prostředí CO2, a tím se v prostředí sráží uhličitan vápenatý. Za tři a půl miliardy let jejich působení vzniklo 80 % vápencových pohoří a jiných vápencových útvarů na Zemi. Sinice umí fixovat vzdušný dusík pomocí specializovaných buněk – heterocytů nebo částí vláken – diazocytů.

Aby populace překonaly nepříznivé podmínky, vytvářejí některé rody přetrvávající stadia a zvláštní spory – akinety. Planktonní sinice obývající volnou vodu mají vyvinuty plynové měchýřky, které se spojují do skupin, aerotopů, jejichž regulací mohou ovlivňovat polohu populace ve vodním sloupci, a využívat tak nejvhodnější prostředí pro svůj vývoj. Další jejich výhodou je možnost růstu při nízkých intenzitách světla a v rychlé regeneraci po vyschnutí nebo zámrazu. Sinice jsou také jediné bakterie, které jsou schopny vytvářet komplikované mnohobuněčné stélky.

Jak lidé ovlivňují vznik vodního květu?

Žijeme uprostřed Evropy na území obývaném lidmi skoro po tři tisíciletí, s vyvinutým průmyslem a zemědělstvím. Dlouhodobý vliv této lidské činnosti na životní prostředí se projevil enormními koncentracemi forem dusíku v půdě i ve vodách. Prvkem, který má největší vliv na produkci rostlin v našem prostředí z hlediska minerální výživy, se stal fosfor, což platí i pro sinice a řasy ve vodách.

Optimální poměr dusíku a fosforu pro růst fytoplanktonu je 7:1 (ve váhových jednotkách). Dokud byly koncentrace fosforu nízké, vysoké koncentrace dusíku se nemohly uplatnit a naše vody byly čisté. S pokračující industrializací, nevhodným používáním umělých hnojiv a velkou spotřebou fosfátových pracích prášků koncentrace fosforu stoupala v celém ekosystému – v první řadě ve vodách, které přijímají jak splachy z půdy, tak odpady z průmyslu, z městských čistíren i nečištěné splašky.

Výskyt sinicových vodních květů v našich přehradních nádržích i rybnících je důsledkem této situace. V rybnících rybáři dokonce vysokou koncentraci živin uměle zvyšují, aby tak rybám přibývalo potravy.

Vodním květem nazýváme každé zmnožení řas a sinic viditelné okem jako drobtovité suspenze, šlíry, vrstvy u břehu nebo na volné vodě. Vodní květy sinic vznikají v našem mírném pásu od konce května a vytrvávají ve vodě až do října, obyčejně s maximem v srpnu. Na podzim se vlivem nízkých teplot koncentrace buněk ve vodě sníží a voda se vyčistí, sinice a řasy uloží svá trvalá stádia do bahna, kde při teplotách kolem 4 °C přežijí nepříznivé podmínky. S příchodem jara v době míchání vodních mas jsou tato stádia vyplavena k hladině, a dávají tak vznik novým populacím. Napomáhají jim v tom právě plynové měchýřky, případně velmi malý objem buněk.

Vodní květy v rybnících narůstaly již za rybníkáře Šusty na konci 19. století. Ve dvacátém století začali rybáři rybníky přihnojovat i anorganickými hnojivy, čímž do vody dodali další a mnohem významnější zdroj živin. Rybník, ve kterých se intenzivně hospodaří a produkce kapra dosahuje 500-1000 kilogramů na hektar, jsou tak všechny vysoce eutrofní až hypertrofní.

V současné době se sice hnojení rybníků omezuje, avšak živiny zůstávají vázány v objemném bahně na dně a v okrajových oblastech (litorálu). K nadprodukci řas a sinic přispívá i geomorfologie rybníka. Průměrná hloubka rybníků je 0,5-0,8 metru, nejhlubší místo, loviště, má jen asi o metr více. Voda v rybníce se takřka neustále míchá větrem i teplotní konvekcí, a tak se vysoké koncentrace živin průběžně doplňují z usazenin na dně. Jde vlastně o nepřetržitou kultivaci populací přítomných ve vodě. Na jedné straně zabezpečuje stálý přírůstek fytoplanktonu a tím dostatek potravy pro zooplankton a následně pro ryby, ale na druhé vede k těžké nadprodukci fotosyntetizujících mikroorganizmů, hlavně sinic, ve formě vodních květů.

Potravní řetězec, aneb čím se kdo živí

Rybníky fungují jako uzavřené ekosystémy, protože až na výjimky, například rybník Rožmberk v jižních Čechách, mají v průběhu vegetační sezony velmi malý přítok a odtok. Lze v nich tak dobře sledovat vzájemné vztahy mezi jednotlivými hladinami jejich jednoduchého potravního řetězce. Živiny ve vodě se spotřebovávají při růstu a rozmnožování fytoplanktonu. Toto společenstvo různě velkých autotrofních organismů je základní potravou pro zooplankton, různě velké korýše obývající volnou vodu. Malé druhy fytoplanktonu (5-40 µm) jsou zdrojem potravy pro větší druhy perlooček.

Dafnie jsou zase důležitým zdrojem potravy zejména pro plůdek a malé ryby, potřebují je ale i ryby starší. Pokud je ekosystém v rovnováze, produkce fytoplanktonu právě stačí pro růst dostatečného počtu planktonních korýšů a následně výživu ryb. Starší kaprovité ryby se živí i bezobratlými žijícími v bahně a v okrajových porostech.

Vztahy mezi jednotlivými produkčními hladinami ve vodním ekosystému a vliv různé obsádky na složení zooplanktonu poprvé prostudoval již v padesátých letech náš přední hydrobiolog, docent Jaroslav Hrbáček.

Podmínky pro vznik vodního květu lze sledovat při dvouletém (dvouhorkovém) cyklu obhospodařování rybníků.

První rok v rybníku

V prvním roce rybáři do rybníka nasadí velký počet malých jedinců jednoletého, případně i mladšího kapra. Tato obsádka nestačí zlikvidovat všechny velké dafnie (Daphnia magna, D. pulicaria, D. galeata). Zbylé dafnie sežerou drobné řasy a bičíkovce, kteří vytvářejí vegetační maximum po jarním tání ledu.

Nastává období „čisté vody“, rybník je průhledný až na dno. Je-li ryb skutečně málo (méně než 40 kilogramů na hektar), rybník zůstane čistý, plný velkých perlooček, které vodu filtrují. Po čase však může takový rybník zarůst vyššími ponořenými rostlinami. Proto udržují rybáři určitou obsádku u všech rybníků, které chtějí nadále využívat. U příliš nízké obsádky a příliš vysoké koncentrace živin, hlavně fosforu, nastoupí s oteplením sinice, které vytvářejí velké kolonie (Microcystis, Aphanocapsa), nebo velká vlákna (Dolichospermum, Aphanizomenon, Planktothrix, Anabaenopsis).

Velké stélky zooplankton není schopen konzumovat, sinice jsou pro něj nestravitelné. S dalším oteplením v létě populace sinic přirůstají, vyhovuje jim zvýšená teplota vody, mohou asimilovat i anorganický uhlík ve formě bikarbonátu a vyhovuje jim tedy i zvýšené pH. Plynové měchýřky sinicím umožňují využívat všechny možnosti světelného spektra a koncentrace anorganického uhlíku, které rybník nabízí. Pokud nastanou nevhodné podmínky (příliš zásaditá voda, vysoká koncentrace kyslíku a nedostatek CO2, inhibice fotosyntézy vysokým zářením), může nastat kolaps celé populace. Dojde k rozkladu vodního květu, vyčerpání kyslíku, vzniknou vysoké koncentrace amonných iontů až čpavku. Účinky na rybí populaci jsou dostatečně známy.

Druhý rok v rybníku

Ve druhém roce hospodaření v rybníce žijí již starší ryby, které čeká na podzim výlov. Musí tedy dosáhnout tržní váhy kolem dvou kilogramů. Silný žrací tlak velkých ryb způsobí, že se přirozená potrava rychle vyčerpá a v planktonu „dojdou“ velké dafnie, které do té doby intenzivně konzumovaly menší řasy. Ryby je nutno uměle dokrmovat. Zelené drobné řasy a bičíkovci rychle dorůstají, voda se jejich vlivem pěkně zazelená. Fytoplankton tvoří drobné druhy od 0,5-40 mikrometrů, hlavně zelené řasy (Chlamydomonas, Scenedesmus, Desmodesmus, Monoraphidium, Coelastrum, Staurastrum).

Zelené řasy v současné době extrémně vysokých obsádek doprovází výskyt sinic rodů Anathece a Aphanocapsa. Takový úkaz nazýváme vegetačním zákalem či vegetačním zbarvením vody.

Vztah fytoplankton-zooplankton-ryby jsme vysvětlili na dvouletém hospodaření na kaprovém rybníce. Stejné vztahy  však platí vždy, když je ryb v rybníce málo (rybník je tzv. podsazen při množství ryb 30-200 kilogramů na hektar), nebo příliš mnoho (200-1000 kg/ha), ať už je věk a velikost ryb jakákoli. Jaká se v rybníce pěstuje obsádka, poznají rybáři v letních měsících podle barvy a vzhledu vody.

Poznání zákonitostí vztahů trofického řetězce ve vodách pak umožnilo vypracovat metodu ovlivnění množství a kvality fytoplanktonu ve vodách regulací složení a velikosti rybí obsádky. Biomanipulace spočívá ve zvýšení obsádky dravých druhů ryb, které pak snižují počty konzumentů zooplanktonu. Dalším nutným krokem je omezit přísun živin do nádrže. Kombinace těchto metod se osvědčila zejména v jezerech severských států, v Německu a v USA. Vždy šlo o mnohaleté, velmi nákladné akce, které ovlivnily celá povodí regenerovaných jezer. Musely se zároveň odstranit i sedimenty, které zadržují obrovské zásoby živin, shromážděné po staletí existence jezer.

V našich přehradách podobné pokusy o regulaci výskytu vodních květů biomanipulací rybí obsádky ztěžuje silný vliv řek, nicméně intenzívní výzkum této metody stále probíhá a na řadě vhodných nádrží byla rybí obsádka regulována. Na těchto aktivitách se podílí i náš ústav.

ČTĚTE TAKÉ: Jak potkávám ryby – rozhovor s hydrobioložkou Marií Prchalovou (nejen) o biomanipulacích

Proč si dát na vodní květy sinic pozor

Vodní květ sinic je nebezpečný, neboť buňky mnoha druhů sinic obsahují cyanotoxiny (hepatotoxiny, neurotoxiny, anatoxiny atd.), které přecházejí zčásti i do vody a mohou způsobit alergie a zažívací, nervové a imunologické potíže. Cytotoxiny jsou uloženy uvnitř buněk, zvláště nebezpečná jsou tedy období, kdy se vodní květ rozkládá. Výskyt vodních květů v rybnících není příliš estetický, ale pro lidskou populaci není až tolik nebezpečný, protože cyanotoxiny nejsou toxické pro studenokrevné živočichy, tedy ryby, které konzumujeme (pokud se ovšem v rybnících nekoupeme).

Sinice v našich přehradách však představují vážné riziko, protože přehrady často využíváme jako zdroje pitné vody. Nejvíce rozšířené jsou cyanotoxiny microcystiny, napadající játra. Jsou obsaženy hlavně v buňkách vodního květu Microcystis, ale i rodu Dolichospermum nebo Planktothrix. Dosud bylo objeveno několik desítek forem tohoto toxinu. V rámci Programu podpory cíleného výzkumu AV ČR S601 7004 „Řízení kvality vody v údolních nádržích“ jsme v našem ústavu v letech 2003-2004 studovali složení fytoplanktonu a vodních květů na našich důležitých přehradách (Znachor et al. 2006). Z výsledků vyplývá, že vodní květ se vyvinul na všech osmnácti sledovaných přehradách, lišila se jen jeho koncentrace. Devadesát procent těchto vodních květů obsahovalo sinici Microcystis aeruginosa, v 65 procentech byla Microcystis dominantní. V nefiltrované vodě s vodním květem bylo přítomno v průměru okolo 20, v maximu ale až  125 µg.l-1 microcystinů. Maximální rozvoj vodního květu byl u všech přehrad zaznamenán v srpnu, a to jak v biomase sinic, tak v koncentraci microcystinů. V letech odběrů na tom byly nejhůře přehrady Brněnská, Sedlice u Želivi, Vranov, Skalka u Chebu, Orlík a Nové Mlýny.

„Můžeme si být jisti, že naše pitná voda vyhovuje normě. Nicméně nestanovitelná stopová množství toxinů mohou působit dlouhodobě, v tělech teplokrevných organizmů se mohou akumulovat a později působit jako kancerogeny nebo mutageny.“

Limit koncentrace mikrocystinů v pitné vodě je stanoven na 1 µg na litr. Kontrola našich pitných vod je na světové úrovni, takže si můžeme být jisti, že naše pitná voda vyhovuje normě. Nicméně nestanovitelná stopová množství těchto toxinů mohou působit dlouhodobě, v tělech teplokrevných organizmů se mohou akumulovat a později působit jako kancerogeny nebo mutageny. Snížení koncentrace živin, zvláště fosforu, v našich vodách je tedy nanejvýš žádoucí.

A kam dál?

Jednou z dalších otázek je, proč kolonie a vlákna planktonních sinic dominují nad objemnými buňkami a koloniemi jiných fototrofních planktonních druhů. Vždyť zelené řasy využívají živiny a sluneční energii mnohem účinněji než sinice. Je to způsobeno několika faktory. Sinice jsou nenáročné na světlo, rostou i v zastíněných vrstvách vodního sloupce, kde mohou vytvořit i značnou biomasu (např. Planktothrix agardhii). Řada druhů roste sice pomaleji, než je tomu u zelených řas, ale ve vodě vytrvávají mnohem déle. Sinice mají ještě další výhody – jsou schopny vzplývat a fixovat vzdušný dusík, což využívají zejména v letním období, kdy může ve vodě nastat nedostatek dusičnanových iontů. Tato schopnost u zvláštní sinice Limnoraphis robusta umožnila vznik těžkého vodního květu v atraktivním, téměř oligotrofním jezeře Atitlán v Guatemale, kde jsme se také podíleli na výzkumu. Nedostatek dusíku nedovolil růst fytoplanktonu, což je v tropických vodách časté, ale zvýšený přísun fosforu umožnil této poměrně objemné vláknité sinici fixovat plynný dusík a opatřit si jeho přísun. Následkem toho vznikl v jezeře silný hnědý vodní květ, ačkoli celkové koncentrace živin byly velmi nízké. Jak jsem již napsala, přizpůsobivost sinic je neobyčejná.

Současný výzkum v oblasti vodních květů se ubírá dvěma směry. V ekologickém směru se vědci snaží porozumět dokonale vztahům mezi jednotlivými hladinami potravního řetězce včetně jeho základu – zdrojům a přeměnám živin v prostředí, uvolňování živin z usazenin na dně, jejich spotřebou a způsobem přijímání fytoplanktonem, a to jak celým společenstvem, tak jednotlivými druhy, které společenstvu dominují.

Vodní květy se vyznačují často jednodruhovým složením. Ověřuje se proto také hypotéza, že taková populace produkuje látky, které omezují rozvoj jiné populace.

Druhý směr spočívá v moderním přístupu k taxonomickému hodnocení diverzity druhů a rodů sinic v jednotlivých biotopech. Molekulární analýzy genomů ukázaly na genu 16S rRNA, že příbuznost a rozlišení druhů a rodů sinic je zakódováno jinak, než jsme si představovali. Už jsou známy i geny řídící produkci cytotoxinů. Jsou vždy přítomny u všech populací produkujících toxiny, avšak ne vždy jsou tyto geny aktivní. Další výzkum tímto směrem by přinesl důležité informace pro vodohospodářskou praxi a v budoucnu snad i možnost regulace toxicity u nebezpečných populací sinic vytvářejících vodní květy.

jsou tvořeny jednak druhy kokálními, vodní květ je pak trupelnatý a může vytvářet i silné vrstvy. Nejčastější jde o druh Microcystis aeruginosa, dále M. ichthyoblabe, M. wesenbergiiM. viridis.

Druh Aphanocapsa incerta se vyskytuje v planktonu jako doprovodný, v malých koloniích i při vysoké obsádce a vysoké koncentraci živin. Nemá plynové měchýřky, ale jeho kolonie obsahují množství slizu, který také dopomáhá při vzplývání. Vláknité sinice bez akinet vytvářejí na hladině šlíry a protáhlé pruhy, avšak mohou vytvářet maxima i hlouběji pod hladinou (Planktothrix agardhii, Leptolyngbya contorta, Pseudanabaena limnetica, Limnothrix redekei).

Další skupina vláknitých sinic s heterocyty a akinetami (Nostocales), např. rody Dolichospermum (dříve planktonní Anabaeny: Dolichospermum circinale, D. planktonicum, A. lemmermannii) nebo Anabaenopsis vytvářejí shluky v podobě smotků, nebo pokud jsou vlákna rovná, opět pruhy na hladině. Druhy rodu Aphanizomenon (Aphanizomenon flos-aquae, A. yezoense) vytvářejí ve vodě okem patrné skupiny tvaru očních řas a různě dlouhých pentliček.

Problematikou sinic, sinicových květů, prevencí a bojem s nimi se v naší zemi zabývá řada pracovišť. O jejich činnosti, případně další informace o vodních květech se lze dozvědět např. na webových stránkách:

www.sinicearasy.cz

www.povodi.cz

www.fytoplankton.cz

www.muni.cz

www.sinice.cz

www.cyanodb.cz

Literatura

Hrbáček J., Dvořáková M., Kořínek V., Procházková L. (1961): Demonstration of the effect of the fishstock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. – Verh. Internat. Verein. Limnol. 20: 192-195.

Hrbáček J. (1962): Species composition and zooplankton in relation to fishstock. Rozpravy ČSAV 72, 114 pp.

Komárková J. (1983): Factors influencing the development of Aphanizomenon flos-aquae bloom in Czechoslovak eutrophic fish ponds. – Schweiz.Z.Hydrol. 45: 301-306.

Fott J., Pechar L., Pražáková M. (1980): Fish as a factor controlling water quality in ponds. In: Barica J., Mur L.R. (eds.) Hypertrophic Ecosystems. – Development in Hydrobiology 2, 119 p.

Komárek J., Hauer T.: CyanoDB.cz – A Database of Cyanobacterial Genera. [www.cyanodb.cz]

Maršálek B., Keršner V., Marvan P. (1996): Vodní květy sinic. – Nadatio flos-aquae, Brno 1996, 142 pp.

Matěna J., Vyhnálek V., Šimek K. (1994): Food web management. In: Eiseltová M. (ed.): IWRB publication 32, pp. 97-102.

Komárková J., Faina R., Pařízek J. (1986): Influence of the watershed and fishstock upon the fish pond biocenoses. – Limnologica (Berlin) 17: 335-354.

Šusta J. (1884): Kapr a výživa jeho družiny rybničné. – Vlastním nákladem, ?? pp.

Znachor P. Vodní květy řas a sinic. Scientific American – July 2005:44-51 Znachor P., Jurczak T., Komárková J., Jezberová J., Mankiewicz J., Kaštovská K. & E. Zapomělová: Summer changes in Cyanobacterial Bloom Composition and Microcystin Concentration in Eutrophic Czech reservoirs. – Inc. Environ.Toxicol. (Willey Periodicals) 21: 236-243.

TÉMA MĚSÍCE: Voda

O autorovi

Jaroslava Komárková

 

Další články k tématu

I PITNÁ VODA MŮŽE ŠKODIT

Co do hmotnosti je dospělý člověk ze dvou třetin voda. Kdybychom to však vzali na počet molekul, pak jsme „skoro samá voda“, protože přes 99,5 % z...

Voda: pozoruhodná molekula, ohrožený zdroj

Jen jedna z každých dvou set molekul v lidském těle nemá chemický vzorec H2O. Žijeme na planetě pokryté téměř ze tří čtvrtin vodou,...

Voda virtuální, přesto skutečná

Kolik virtuální vody je obsaženo v potravinách a výrobcích, které kupujete? A jaká je vaše vodní stopa? Napadlo vás někdy, že spotřebováváte nejen...

Struktura a anomálie vody

Voda vykazuje překvapující řadu fyzikálních vlastností, některé zjevně jedinečné, které slouží k definici její neobvyklé „osobnosti“.F. H....

Varovné poselství studánek

Místům, kde z útrob země vyvěrá průzračná voda, je odpradávna přiřazována zázračná moc. Mnohé prameny, které lidé po staletí uctívali, ochraňovali...

Obrazem: Ať víte, s kým se koupete

Voda českých rybníků, přehrad, řek, potoků a tůní vypadá na podložním sklíčku mikroskopu trochu jinak než při pohledu ze břehu. A protože většina...

O čem mlčí ryby

Stavby přehrad byly vždy kontroverzním zásahem do krajiny. Ale člověk vodní nádrže dál ovlivňuje, bohužel často nepříznivě. Chceme-li se dozvědět,...

Když se rozpouští elektron

Vítejte ve světě, kde miliontina miliontiny sekundy je příliš dlouhá na seriozní práci, ale rozbor událostí, které se za tu dobu odehrály, trvá...

Kdo chce žít v loužích, musí žít rychle

Louže jsou pro mnohé jen nepříjemnost po dešti, která ukazuje, jak jsou naše cesty nedokonalé. Jsou dobré leda do básniček a výchovných povídek....

Cesty k odmoření vod

Hnojiva, pesticidy, ale i běžná domácí chemie, kosmetika, léky. Tím vším lidé „obohacují“ vodu, aby se pak pracně snažili najít způsob, jak ji...

Hon na bathynellu

Knihy mají moc rozhodovat o životních osudech. Něco o tom vím. Nebýt knihy Otakara Štěrby Pramen života (Panorama, 1986), neobracel bych v dětství...

Dobrodružství vody ve vesmíru

V nevýrazném a jen málo známém souhvězdí Rysa můžeme s vynaložením všech sil a špičkových technologií pozorovat objekt APM 08279+5255. Pod touto...

Doporučujeme

Se štírem na štíru

Se štírem na štíru

Daniel Frynta, Iveta Štolhoferová  |  4. 11. 2024
Člověk každý rok zabije kolem 80 milionů žraloků. Za stejnou dobu žraloci napadnou 80 lidí. Z tohoto srovnání je zřejmé, kdo by se měl koho bát,...
Ustrašená společnost

Ustrašená společnost uzamčeno

Jan Červenka  |  4. 11. 2024
Strach je přirozeným, evolucí vybroušeným obranným sebezáchovným mechanismem. Reagujeme jím na bezprostřední ohrožení, které nás připravuje buď na...
Mláďata na cizí účet

Mláďata na cizí účet uzamčeno

Martin Reichard  |  4. 11. 2024
Parazitismus je mezi živočichy jednou z hlavních strategií získávání zdrojů. Obvyklá představa parazitů jako malých organismů cizopasících na...