Uhlí jako úložiště a zdroj plynů
Oxid uhličitý je v současnosti nejvýznamnějším antropogenním skleníkovým plynem. V porovnání s ostatními sice nevykazuje nejsilnější efekt, ale jeho mimořádný význam je dán tím, že je emitován v největším množství. Proto je snižování jeho emisí v popředí zájmu na celém světě.
Vedle žádoucího omezení vzniku emisí vypouštěných do ovzduší zejména z energetických zdrojů je možné významně snižovat obsah oxidu uhličitého v atmosféře i jinak. Lze jej zachytávat a ukládat do vhodných dlouhodobých úložišť v geosféře, jako jsou vytěžená ložiska ropy a plynu, hluboká zvodnělá pískovcová souvrství nebo souvrství uhelná. Za velmi efektivní způsob ukládání oxidu uhličitého se považuje injektování do uhelných slojí, neboť se obvykle provádí paralelně s těžbou uhelného metanu. Podle výsledků výzkumu, simulačních studií a zkušeností z prvních pilotních projektů dochází zároveň k vítanému zvýšení produkce metanu. Metoda se označuje zkratkou ECBMR (Enhanced Coal Bed Methane Recovery) a je vhodná zejména k využití netěžitelných uhelných slojí. Oxid uhličitý lze injektovat rovněž do uhelných ložisek s dlouhodobě probíhající těžbou metanu, což se již dnes využívá v řadě zkušebních projektů. V budoucnosti se uvažuje o propojení technologie ukládání oxidu uhličitého s efektivnějším využitím těženého metanu, a to nejen pro elektrárenské účely, ale především pro výrobu vodíku – plynu s širokými možnostmi využití. Vodíkový systém by mohl být reálnou možností jak pokrýt energetické požadavky ve světě.
Uhlí jako kolektor
Existence přirozeného či uměle vytvořeného „plynového kolektoru“ v uhelných slojích je umožněna výjimečnými vlastnostmi uhlí. Tato hornina představuje organogenní sediment makromolekulárního charakteru, který vznikl působením teploty a tlaku v dlouhém časovém intervalu anaerobní chemickou přeměnou rostlinných tkání, při níž rostlinná hmota zuhelnatěla. Uhlí má typické vlastnosti gelu, snadno se v něm rozpouští řada plynů a par. Při těchto procesech bobtná a s vybranými plyny ochotně reaguje za vzniku chemisorpčních komplexů. Ve svém vnitřním prostorovém uspořádání si přírodní uhlí podrželo podstatnou část porézní struktury rostlinné hmoty a převažují v něm tak dutiny s efektivními rozměry pod 2 nm; jde tedy o látku s mikroporézní strukturou.Porézní systém uhlí je tvořen sítí pórů, které jsou v ideálním případě propojeny. Tuto síť si lze představit jako povodí řeky nebo soustavu žil v lidském těle. Označení „póry“ zahrnuje trhliny a dutiny milimetrových rozměrů viditelné pouhým okem, trhliny a dutiny mikrometrických rozměrů, které lze identifikovat světelným a skenovacím elektronovým mikroskopem, a póry nanometrických velikostí, jejichž přítomnost lze určit pouze transmisním elektronovým mikroskopem. 1)
Sorpční procesy probíhající v porézním systému uhelné hmoty lze považovat za hlavní mechanizmus uložení metanu a obdobně i ukládání oxidu uhličitého. 2) Vysokotlaké izotermy poskytují údaj o celkovém množství plynu v uhlí, ale bez rozlišení způsobu vazby. Uvažuje se o možnosti, že plyn je vázán zčásti jako adsorbovaný, zčásti jako volný bez interakce s uhlím a rozpuštěný v pórové vodě. Ačkoliv je znám mechanizmus sorpce v mikropórech objemovým zaplňováním, je množství plynu adsorbované v mikropórech zahrnováno bez bližšího rozlišení do celkového adsorbovaného množství. Vzhledem k tomu, že mikroporézní systém je hlavní texturní součástí přírodního kolektoru plynu, byl vedle plynu adsorbovaného na povrchu mezopórů a makropórů definován i plyn adsorbovaný v mikroporézní fázi jako samostatná forma vazby plynu v uhlí. Všechny formy vazby plynu na uhlí lze matematicky vyjádřit a pomocí experimentálně ověřených výpočtů můžeme stanovit potenciální množství metanu uloženého ve sloji a kapacitu uhlí pro uložení oxidu uhličitého.
Sorbované množství plynu v mikropórech se obvykle interpretuje jako adsorbované. Plyn však má také schopnost se rozpouštět (absorbovat) v makromolekulární uhelné matrici. Adsorpce a absorpce představují souběžně probíhající děje, které zatím nelze experimentálně rozlišit. K určení absorbovaného množství byla použita metoda anylýzy sorpční izotermy a absorbované množství bylo definováno jako další způsob vazby plynu v uhlí. Metanu je v uhelné matrici absorbováno významně více než oxidu uhličitého. Celkové absorbované množství plynu zvyšuje kapacitu ložiska, avšak zároveň způsobuje bobtnání uhelné hmoty, a tím negativně ovlivňuje propustnost jejího porézního systému.
Metan a oxid uhličitý se vážou různě
Uhlí má schopnost sorbovat větší množství oxidu uhličitého než metanu, obvyklý poměr je 2 : 1. Provedené studie potvrzují závislost tohoto poměru zejména na stupni prouhelnění ložiska a jeho tlakových a teplotních podmínkách. Poměr oxidu uhličitého k metanu je nejvyšší u nízkoprouhelněných uhlí, klesá se zvyšujícím se stupněm prouhelnění. Sorpční schopnost uhelné hmoty je tedy vyšší u hnědých uhlí a snižuje se k černým uhlím. 3)Vzhledem k stále ještě rozsáhlým zásobám uhlí, a to i na území České republiky, představuje ukládání oxidu uhličitého do uhelných slojí jednu z možných cest k snižování obsahu skleníkových plynů v atmosféře.
Poznámky
SLOVNÍČEK
absorpce – pohlcování, vstřebáváníadsorpce – hromadění látky na povrchu látky jiné (adsorbentu) působením fyzikálních sil, vratný děj
chemisorpce – hromadění látky na povrchu látky jiné (adsorbentu) působením chemických sil, nevratný děj
objemové zaplňování – mechanizmus sorpce plynu v mikropórech jako důsledek zesíleného adsorpčního potenciálu protilehlých stěn pórů
kritická teplota – teplota, nad kterou nelze plyn zvyšováním tlaku zkapalnit
kritický tlak – minimální tlak nezbytný ke zkapalnění plynu při jeho kritické teplotě
izoterma – závislost adsorbovaného množství adsorbátu na tlaku za konstantní teploty
Ke stažení
- článek ve formátu pdf [431,93 kB]