Vesmírná škola 2Vesmírná škola 2Vesmírná škola 2Vesmírná škola 2Vesmírná škola 2Vesmírná škola 2

Aktuální číslo:

2024/12

Téma měsíce:

Expedice

Obálka čísla

Matematické a počítačové modelování aktivních materiálů

 |  15. 1. 2009
 |  Vesmír 88, 21, 2009/1

Matematické a počítačové modelování je obor, ve kterém jazykem matematiky popisujeme děje v přírodních, technických nebo společenských vědách. Matematický model analyzujeme, zrealizujeme na počítači a výsledky užíváme k hlubšímu poznání zkoumané skutečnosti. Jednou z nejsložitějších oblastí matematického modelování jsou aplikace ve vědě o materiálech, zejména materiálech aktivních či inteligentních. Je to tím, že se podstatné fyzikální jevy objevují zároveň v rozličných měřítkách (od mikro- po makro-) a spadají do různých oblastí fyziky. Funkce těchto materiálů bývá zpravidla založena na fázových transformacích za vzniku složitých mikrostruktur. Do této skupiny patří materiály vykazující magnetostrikci či elektrostrikci, popřípadě materiály pracující čistě jen na mechanických nebo termomechanických principech, jak to dělají materiály s tvarovou pamětí.

Co a jak si inteligentní materiály pamatují?

Tvarová paměť tak trochu připomíná kouzlo. Chladný vzorek materiálu snadno zdeformujeme tak, že výrazně změní tvar. Po zahřátí nad jistou charakteristickou teplotu si ale vzorek „vzpomene“ na svůj původní stav (viz obrázek 2), jak vidíme na příkladu polykrystalického drátku ze slitiny niklu a titanu (NiTi). Tvarová paměť byla poprvé experimentálně pozorována počátkem padesátých let minulého století na slitině zlata a kadmia (AuCd). Materiály s tvarovou pamětí jsou slitiny chemicky vázaných kovů, jejichž vlastnosti nelze odvodit pouhým průměrováním jednotlivých složek. Jako příklad uveďme amalgám, běžně používaný k zubním výplním, nebo velmi biokompatibilní NiTi, který obsahuje asi 50 % jinak vysoce alergenního niklu.

Fyzikální podstatou paměti tvaru je vratná transformace z pevné do pevné fáze, která spočívá v přeskupení atomů krystalové mřížky. Vyšší teplota způsobí, že atomy zaujmou symetričtější strukturu (většinou krychlovou), zvanou austenit. Nízkoteplotní fáze má nižší symetrii (tetragonální, ortorhombickou nebo monoklinickou) a nazývá se martenzit. Existuje ve více variantách. Transformace vzorku z jedné do druhé varianty pak vyžaduje již jen poměrně malé mechanické napětí. Jednoduše si to lze představit tak, že se krychle při poklesu teploty pod jistou hodnotu transformací změní na kosoúhlé kvádry, které mají vzhledem k původní krychli různou orientaci. Ty pak tvoří krystalograficky shodné, ale různě orientované varianty martenzitu. Pokud transformace probíhá bez vnějšího mechanického napětí, tvarové změny jednotlivých variant se vzájemně vyrovnávají, aniž se mění jejich objem. Při teplotě vyšší, než je transformační teplota, lze martenzit získat z austenitu také mechanickým napětím. Odtud pochází druhá významná vlastnost materiálů s tvarovou pamětí – superelasticita.

Martenzit je vytvořen deformací austenitu při konstantní teplotě. Když se zatížení uvolní, materiál se samovolně vrací do austenitu, přičemž poměrně velká vratná „elastická“ deformace (až 15 % oproti přibližně 1 % u běžných kovů) je doprovázena jen malými změnami mechanického napětí ve vzorku. To se využívá například v nikl-titanových kardio vaskulárních stentech (viz M. Lapčíková; Vesmír 85, 171, 2006/3), kde výztuž působí na pulzující cévu téměř neměnnou silou. Navíc mohou být ve velmi zdeformovaném stavu dopraveny pomocí katétru cévním řečištěm na správné místo v lidském těle. Jiným příkladem jsou ortodontické drátky používané pro pevná zubní rovnátka, kde drátek působí téměř konstantní silou na zub, jehož polohu rovnáme. Oproti elastické deformaci kovů je ovšem superelasticita velmi nelineární jev doprovázený hysterezí 1) a vznikem mikrostruktury (viz obrázek 1). Ve srovnání s jednou fází bývá totiž mnohdy energeticky výhodnější poskládat jednotlivé varianty martenzitu, popřípadě austenit do složitých konfigurací, které samozřejmě musí splňovat přesné geometrické podmínky (viz obrázek 3). Mezi nejznámější materiály s tvarovou pamětí patří slitiny niklu a titanu (NiTi), mědi, hliníku a niklu (CuAlNi), niklu, manganu a galia (NiMnGa) či železa a paladia (FePd). Poslední dvě mají navíc i magnetické vlastnosti a transformaci mezi austenitem a martenzitem u nich lze řídit i vnějším magnetickým polem. Jelikož lze mikrostruktury a s nimi spojený tvar vzorku měnit i teplotou, mohou být materiály s tvarovou pamětí alternativou k hydraulickým, pneumatickým, popřípadě motorovým aktuátorům, 2) jež mají v průmyslu bezpočet využití.

Matematický a počítačový model

Jestliže vytváříme matematický a počítačový model těchto materiálů, je nutné brát alespoň do jisté míry ohledy na všechny zmíněné skutečnosti. Přitom je třeba si uvědomit, že model je vždy jen více či méně přesné přiblížení fyzikální realitě. Při modelování materiálů kombinujeme principy racionální (termo) mechaniky s fenomenologickým popisem, což znamená, že se model řídí fyzikálními zákony, jako je například zákon zachování energie nebo hybnosti, ale zahrnuje i mnoho závislostí, které známe jen z měření (napětí versus deformace, změna mikrostruktury versus disipace apod.). Dobrý model musí být schopen nejen kopírovat výsledky fyzikálních experimentů, ale i předpovídat chování materiálů s tvarovou pamětí v situacích, kdy tyto experimenty není možné provést (třeba z technologických či finančních důvodů), nebo i třeba pomoci při navrhování nových materiálů. Součástí modelu jsou tak i odezvové funkce materiálu, které na základě empirických dat svazují mechanické veličiny (deformaci, napětí) a teplotu, popřípadě i veličiny elektrické a magnetické. Vztah mezi deformací a napětím je u těchto materiálů velmi komplikovaný. Měrná uložená energie má jako funkce gradientu deformace více lokálních minim, každé z nich odpovídá beznapěťovému stavu austenitu nebo některé z fází martenzitu. Množství disipované mechanické energie je potom úměrné časové změně některých veličin. U materiálů s tvarovou pamětí to často bývá poměr austenitu a martenzitu. Průběh experimentu je většinou řízen okrajovými podmínkami, jako jsou tah, tlak, krut, ohyb, uchycení vzorku, nebo tepelným tokem, elektrickým napětím apod.

Úkolem modelu je předpovědět například deformaci (zjednodušeně řečeno momentální tvar vzorku), procentuální složení fází martenzitu a vývoj geometrického uspořádaní v průběhu experimentu. Důležitou součástí matematického modelování je kromě sestavení modelu také jeho analýza, tedy například zjišťování, zda vůbec je model schopen odpovědět na naše otázky a zda existuje jeho řešení. Dalším krokem je pak numerická analýza a implementace modelu v ně kterém z programovacích jazyků. Numerické řešení vývoje mikrostruktury, deformace, napětí a dalších veličin vede k posloupnosti úloh hledání globálního minima nekonvexní funkce s množstvím lokálních minim a s velkým počtem nezávislých proměnných, což přináší řadu těžkostí. Nejsme totiž obvykle schopni ověřit, že nalezené minimum je skutečně globální, tedy že funkce nenabývá ještě nižší hodnoty (o výzkumu viz též text v rámečku 1 ).

Zmíněné potíže se znásobí, budeme-li se zabývat modelováním polykrystalů, kde je vzorek složen z mnoha vzájemně různě orientovaných jednoduchých krystalů. Z hlediska aplikací mají ovšem právě polykrystaly výrazně širší použití (viz obrázek 4).

Tento výzkum je široce podporován Grantovou agenturou ČR v projektu 201/06/0352, Grantovou agenturou AV ČR v projektu A 1075402 a MŠMT ČR v rámci projektů LC06052, 1M06031, AV0Z20760514 a VZ6840770021. Autoři děkují dr. Petru Šittnerovi (FzÚ AV ČR) za cenné připomínky k rukopisu.

Poznámky

1) Tedy jistou závislostí na historii.
2) Aktuátor – akční člen, který vykonává nějaký mechanický pohyb. Aktuátory bývají řízeny elektricky, magneticky, hydraulicky, piezoelektricky apod.

VÝZKUM AKTIVNÍCH MATERIÁLŮ

Aktivní materiály jsou technologicky užitečné, a proto se jejich výzkum a modelování celosvětově rozvíjí již mnoho desítek let, a to jak z hlediska fyzikálního a matematického, tak z hlediska inženýrského. Matematické modelování materiálů s tvarovou pamětí je jednou z dlouhodobých aktivit Ústavu teorie informace a automatizace AV ČR, v. v. i., a probíhá v těsné spolupráci s experimentálními pracovišti Fyzikálního ústavu a Ústavu termomechaniky AV ČR, v. v. i., a také s oborem „matematické a počítačové modelování“ na Matematicko-fyzikální fakultě UK. Přes bouřlivý rozvoj matematické analýzy a numerických metod v posledním půlstoletí zůstává překvapivě mnoho otázek otevřených, což je pro vědce pracující v aplikované matematice důležitým inspiračním zdrojem. Oblast aktivních materiálů je toho typickým příkladem.

Informace o materiálech s tvarovou pamětí www.fzu.cz/departments/metals/sma/bra na_cz/index.php, blíže o jejich výzkumu staff.utia.cas.cz/kruzikstaff.utia.cas.cz/roubicek/multimat.htm. >

Ke stažení

OBORY A KLÍČOVÁ SLOVA: Matematika

O autorech

Martin Kružík

Tomáš Roubíček

Doporučujeme

Pěkná fotka, nebo jen fotka pěkného zvířete?

Pěkná fotka, nebo jen fotka pěkného zvířete?

Jiří Hrubý  |  8. 12. 2024
Takto Tomáš Grim nazval úvahu nad svou fotografií ledňáčka a z textové i fotografické části jeho knihy Ptačí svět očima fotografa a také ze...
Do srdce temnoty

Do srdce temnoty uzamčeno

Ladislav Varadzin, Petr Pokorný  |  2. 12. 2024
Archeologické expedice do severní Afriky tradičně směřovaly k bývalým či stávajícím řekám a jezerům, což téměř dokonale odvádělo pozornost od...
Vzhůru na tropický ostrov

Vzhůru na tropický ostrov

Vojtěch Novotný  |  2. 12. 2024
Výpravy na Novou Guineu mohou mít velmi rozličnou podobu. Někdo zakládá osadu nahých milovníků slunce, jiný slibuje nový ráj na Zemi, objevuje...