Aktuální číslo:

2024/11

Téma měsíce:

Strach

Obálka čísla

Co způsobí turbulence v nose a v oceánu

 |  10. 11. 2005
 |  Vesmír 84, 638, 2005/11

Není snadné představit si, jak se pohybuje vzduch v složitě tvarovaných nosních dutinách. Proto R. C. Schroter a D. Doorly z londýnské Imperial College spojili biomechaniku s aeronautickým inženýrstvím a vybudovali trojrozměrný průhledný model nosních dutin, jímž mohou prohánět kapaliny obsahující obarvené částečky. Rychlost a způsob pohybu kapalin simuluje různé způsoby vdechování nosem, digitální kamery sledují pohyb barevných částeček a počítače zjišťují dynamiku kapalin. Tak například hluboké vdechnutí nosem s rychlým nabráním vzduchu vyvolá rychlou cirkulaci k čidlu čichu v horní části nosu. Už malé zvýšení rychlosti toku nasměruje vzduch k odlišným částem nosních dutin. Mapování způsobů vdechu by mělo pomoci specialistům na uši, nos a krk zlepšovat operace a zpřesňovat dodávku léčiv do krevního oběhu.

Studie dalších druhů turbulence zase pomáhají zjišťovat podmínky úživnosti v mořích. Dosavadní představa byla, že podobně jako silnější turbulence větru déle udrží zvířený prach na cestě, udržuje silnější víření v oceánu fytoplankton blíže povrchu, a tím zvyšuje jeho fotosyntézu a příjem živin. Vědci z univerzity ve španělském Cádizu však zjistili, že je to obráceně: v hlubokých mořích turbulence zrychluje klesání fytoplanktonu ke dnu. Prokázali to pokusy v tancích o objemu od 9 do 520 litrů. Různě rychlou turbulenci vyvolávali buď dvěma ponořenými válci točícími se opačným směrem, nebo ponořenou mřížkou, jíž motor pohyboval nahoru a dolů. Osvětlený roztok s částečkami pak sledovali kamerou VC38, která pořizuje snímky v intervalech 53 ms, a tak lze spočítat vertikální rychlosti do 0,23 m.s–1. Doplňkově měřili rychlosti také akustickým detektorem využívajícím Dopplerův efekt. Výsledkem všech měření je, že částečky těžší než mořská voda (zejména hojné rozsivky) klesají při zvětšení turbulence rychleji, lehčí částečky zase rychleji stoupají k povrchu. Uplatňují se při tom zároveň gravitace, hmotnost částeček, gradienty tlaku a viskozita. Pro fytoplankton tedy turbulence není příznivá, žene ho do hloubek. Fytoplanktonní organizmy zřejmě v průběhu vývoje tuto nepříznivou situaci přežily díky morfologickým a fyziologickým adaptacím. To je ovšem ještě třeba prokázat studiemi v hlubokých mořích, až bude možné použít vyvíjené automatické přístroje vhodné pro dlouhodobá měření v hloubkách větších než 1000 m. (Photonics Spectra 39, 158, 2005/2, Biophotonics International 12, 51, 2005/2)

Ke stažení

RUBRIKA: Aktuality

O autorovi

Zdeněk Šesták

RNDr. Zdeněk Šesták, DrSc., (*1932) vystudoval Přírodovědeckou fakultu UK v Praze. V Ústavu experimentální botaniky AV ČR se zabývá fyziologií fotosyntézy. Šéfredaktor časopisu Photosynthetica. (e-mail: sestak@ueb.cas.cz)

Doporučujeme

Se štírem na štíru

Se štírem na štíru

Daniel Frynta, Iveta Štolhoferová  |  4. 11. 2024
Člověk každý rok zabije kolem 80 milionů žraloků. Za stejnou dobu žraloci napadnou 80 lidí. Z tohoto srovnání je zřejmé, kdo by se měl koho bát,...
Ustrašená společnost

Ustrašená společnost uzamčeno

Jan Červenka  |  4. 11. 2024
Strach je přirozeným, evolucí vybroušeným obranným sebezáchovným mechanismem. Reagujeme jím na bezprostřední ohrožení, které nás připravuje buď na...
Mláďata na cizí účet

Mláďata na cizí účet uzamčeno

Martin Reichard  |  4. 11. 2024
Parazitismus je mezi živočichy jednou z hlavních strategií získávání zdrojů. Obvyklá představa parazitů jako malých organismů cizopasících na...