Aktuální číslo:

2025/7

Téma měsíce:

Umění

Obálka čísla

Co je to kinetické Monte Carlo

aneb Jak jsem fušoval evolučním biologům do řemesla
 |  5. 4. 2012
 |  Vesmír 91, 195, 2012/4

Bereme jako samozřejmost, že jakoukoliv barvu, kterou člověk vnímá, lze složit ze tří základních barev (červená, zelená, modrá – stačí se podívat lupou na obrazovku počítače nebo televize). Přitom naši vzdálení příbuzní, plazi a ptáci, vidí (zpravidla) barvy čtyři, většina savců však jen dvě. Čtyřbarevné vidění je evolučně starší. Savci totiž v průběhu skrytého nočního života ve stínu krvelačných praještěrů dva pigmenty ztratili. My a většina primátů Starého světa vidíme barvy tři, protože dlouhovlnný pigment se v důsledku mutace rozdělil na dva. Obě varianty mají sice překrývající se křivky citlivosti s blízkými maximy, takže hardwarově na tom nejsme nijak slavně, náš mozek však disponuje softwarem, který si s tím poradí. Oba geny jsou na pohlavním chromozomu X, takže pokud dojde k závadě, jsou na tom ženy lépe, protože mají tyto chromozomy dva. Proto je také červenozelená barvoslepost rozšířenější u mužů.

Evoluce u opic Nového světa se prodírala jinými cestičkami.1) Samci nerozlišují červenou a zelenou vůbec a jedna třetina samic také ne. Pouze asi dvě třetiny samic mají plné trichromatické vidění. Je to proto, že v populaci se u jediného genu pro dlouhovlnný pigment (opakuji, že my máme tyto geny dva) vyskytují tři alely, jejichž spektrální citlivosti se poněkud liší. Samci mají jeden chromozom X, a proto jen jednu variantu pigmentu a nemohou vidět tříbarevně. Samice mají pohlavní chromozomy X dva, a pak záleží na tom, jaké alely se sejdou. Pokud se sejdou dvě stejné, je opička také barvoslepá. Pokud se sejdou dvě různé, rozlišuje opice červenou a zelenou; to nastane ve dvou třetinách případů.

Z tohoto líčení není ale zřejmé, jakým mechanismem se po dobu desítek milionů generací udržuje v populaci rovnoměrné zastoupení tří alel (označme je A, B a C). Zřejmě je jistou výhodou být schopen rozlišit červené a žluté ovoce, ale jak se tato výhoda projeví na potomstvu? Problém mi vrtal hlavou, a tak jsem se rozhodl využít počítačových simulací, metodu nazvanou po slavném kasinu Monte Carlo. Živím se totiž simulováním molekul, a ono je z technického hlediska skoro jedno, jestli nahradím molekuly opicemi.

Nejjednodušší typ modelu pracuje po generacích. V jedné generaci se jedna samice spáří s náhodně vybraným samcem a může porodit jednoho potomka. Aby počet opic nerostl exponenciálně nade všechny meze, což by vedlo k ekologické katastrofě (v přírodě i na počítači), nemohou se narodit všechna mláďata. Předpokládejme, že limitující je množství potravy a že potomek s určitou pravděpodobností úměrnou celkovému počtu žravých opic zahyne hlady. Evoluční výhoda barevného vidění je reprezentována tím, že pravděpodobnost přežití potomka lépe vidoucí opice je o malinko větší než u opice barvoslepé.

Na obrázku je ukázán vývoj počtu jednotlivých alel v populaci milionu opic, jestliže na začátku byla alely A jen desetina procenta, B a C byly zastoupeny stejně a pravděpodobnost přežití potomka trichromatické opice je o pouhých 0,1 % větší než dichromatické. Opice žije deset generací. Vidíme, že po počátečním váhání dojde k rovnoměrnému rozprostření alel v populaci. Pro uvažované počáteční podmínky a velmi malou výhodu barevného vidění je začátek kritický, ve ¾ případů (z 50 simulací) dokonce došlo k vymizení alely a jen ¼ se ujala. Příroda musí trpělivě zkoušet několikrát. Není-li však barevné vidění žádnou výhodou, vymizí alela ve 100 % případů.

Kvalitativně se výsledky modelu dají vysvětlit uvažováním z hlediska genu, který je, jak známo, sobecký. Je-li např. málo alely A, pak s velkou pravděpodobností narazí při páření na B nebo C a usadí se v úspěšnější opici s kombinací alel AB nebo BC. Je-li alely A hodně, zvyšuje se pravděpodobnost, že se setká s A.

Model je maximálně zjednodušený a jistě ho lze libovolně zesložitit, např. realističtějšími pravidly přežívání opic v závislosti na zdrojích, modelováním proměnného přísunu potravy, výběrem partnera z okolí a zavedením migrace atd. Avšak čím jednodušší model, tím lépe pochopíme, jak vlastnosti jednotlivce vedou k chování komplexního systému.

Simulační metody založené na pojmu náhodné události, ke které dojde za určitých podmínek s určitou pravděpodobností, se ve fyzice a chemii nazývají kinetické Monte Carlo. Lze jimi studovat třeba růst krystalu po jednotlivých atomech či postup polymerace (monomery přidifundují a zreagují), hromadnou obsluhu (zákazníci přijdou a jsou obslouženi) a vůbec ekonomii (ale pozor, na rozdíl od fyziky, kde máme zákon zachování energie, zde žádný zákon zachování peněz neplatí), vznik dopravní zácpy a mnoho dalších jevů. Obecně nás zajímá chování složitého systému v průměrném (statistickém) smyslu, jestliže známe mechanismy vzájemného působení jednotlivých částí.

Poznámky

1) Scientific American 4, 40 (2009) – zajímavý článek o evoluci barevného vidění u primátů.

Ke stažení

OBORY A KLÍČOVÁ SLOVA: Evoluční biologie
RUBRIKA: Glosy

O autorovi

Jiří Kolafa

Kolafa Jiří, RNDr., CSc., (*1958) vystudoval MFF UK. V Ústavu chemických procesů AV ČR se zabývá fyzikou kapalin, Monte Carlo výpočty, molekulární dynamikou složitých molekul. Autor několika SciFi povídek. http://www.icpf.cas.cz/jiri/ http://www.volny.cz/kolafa/

Doporučujeme

Věstonická superstar

Věstonická superstar video

Soška tělnaté ženy z ústředního tábořiště lovců mamutů u dnešních Dolních Věstonic pod Pálavou je jistě nejznámějším archeologickým nálezem...
K čemu je umění?

K čemu je umění? uzamčeno

Petr Tureček  |  7. 7. 2025
Výstižná teorie lidské evoluce by měla nabídnout vysvětlení, proč trávíme tolik času zdánlivě zbytečnými činnostmi. Proč, jako například lvi,...
Paradoxní příběh paradoxu obezity

Paradoxní příběh paradoxu obezity uzamčeno

Petr Sucharda  |  7. 7. 2025
Obezita představuje jednu z nejzávažnějších civilizačních chorob, jejíž důsledky zasahují do téměř všech oblastí lidského zdraví. Její definice...