Vesmírná školaVesmírná školaVesmírná školaVesmírná školaVesmírná školaVesmírná škola

Aktuální číslo:

2025/1

Téma měsíce:

Exploze

Obálka čísla

Celokřemíková optoelektronika v dohledu?

Elektroluminiscenční diody z porézního křemíku
 |  5. 2. 1998
 |  Vesmír 77, 75, 1998/2

Před necelými čtyřmi lety jsme seznámili čtenáře Vesmíru s hitem polovodičového výzkumu počátku devadesátých let – s takzvaným porézním křemíkem (viz Vesmír 73, 282, 1994/5). Připomeňme si, že jde o elektrochemicky naleptaný krystalický křemík, který fascinuje svou schopností rozsvítit se červeně až oranžově při ozáření ultrafialovým světlem (stačí použít běžnou lampu určenou k luminiscenční kontrole bankovek). Tato intenzivní viditelná fotoluminiscence je u „obyčejného“ krystalického křemíku naprosto vyloučena kvůli struktuře jeho energetických stavů. 1)

Dobrá, jde o zajímavý objev. Proč ale vzbudil tak mimořádnou vlnu zájmu na výzkumných pracovištích po celém světě? Je to proto, že může mít obrovský význam pro elektrotechnický průmysl. S porézním křemíkem se vynořily naděje na částečné spojení dvou dosud dosti oddělených světů: světa mikroelektroniky – integrovaných obvodů (zpracování a záznamu informací) a světa optoelektroniky – svítících diod a polovodičových laserů (zobrazování a přenosu informací). Prvnímu vévodí jednoznačně křemík, druhému zatím vládnou polovodiče tvořené prvky skupiny III a V periodické tabulky prvků, např. GaAs, AlP, GaP nebo moderní GaN (viz Vesmír 75, 416, 1996/776, 309, 1997/6. Malé, kompaktní (a téměř nezničitelné) optoelektronické světelné zdroje na bázi porézního křemíku by mohly nahradit – alespoň částečně a pro určitý obor vlnových délek světla – polovodiče III–V. A především by mohly být přímo součástí křemíkových integrovaných obvodů. Taková „celokřemíková optoelektronika“ by zjednodušila a zrychlila zpracování, přenos a zobrazování informací. Ekonomický i ekologický přínos by byl obrovský (polovodiče III–V se připravují z drahých a obvykle velmi toxických sloučenin, kdežto výroba křemíku je poměrně levná a jeho zásoby jsou téměř nevyčerpatelné).

Nadějný objev a silná motivace se slušným finančním zajištěním znamenaly pro porézní křemík výtečné startovní podmínky. Následovat musela mravenčí práce odborníků v laboratořích – pokud by nevedla poměrně rychle k úspěchu, vydal by se výživný proud financí jiným směrem. Konkurence je veliká. Jak si vede porézní křemík v tomto boji, jaké problémy stojí v cestě jeho aplikacím?

Především si musíme uvědomit, že křemík r. 1990 sice krásně „zasvítil“, ale samotná fotoluminiscence, byť sebevíc intenzivní, je pro optoelektroniku nepoužitelná. Optoelektronické zdroje světla jsou založeny na elektroluminiscenčním principu: Budicí energie, která se v konečné fázi mění na viditelné luminiscenční záření, musí být do součástky dodávána elektrickým proudem, nikoliv UV-světlem. Jen tak získává smysl vzájemné propojení elektrických a optických křemíkových integrovaných obvodů. A právě při hledání cesty od fotoluminiscence k elektroluminiscenci se narazilo na zásadní potíže. Náš článek v r. 1994 konstatoval dva velké problémy:  vytvoření kvalitního elektrického kontaktu na povrchu nesouvislé porézní vrstvyšpatnou stálost materiálu. V několika laboratořích již tehdy byly zkonstruovány svítící diody na bázi porézního křemíku s kovovými či polymerními kontakty, ale účinnost a stabilita takových součástek byla velmi nízká. Přes významný pokrok nejsou zmíněné potíže dodnes zcela vyřešeny, a navíc se objevil problém ještě závažnější: nízká elektrická vodivost samotného porézního křemíku. Krystalický (neporézní) křemík je typický polovodič, to znamená, že nevede elektrický proud zdaleka tak ochotně jako kov, ale pro aplikace v elektronických obvodech to plně stačí. Jestliže se však křemík má stát svítícím materiálem, je třeba jej učinit porézním s velmi vysokou porozitou (70 – 80 %). Jinými slovy, v daném objemu zůstává pouze 20 – 30 % látky, zbytek je prázdnota, asi tak jako u hodně děravého ementálu či u mycí houby. Je pochopitelné, že takto upravený polovodič bude klást elektrickému proudu podstatně větší odpor než polovodič kompaktní, krystalický (měrná vodivost poklesne zhruba milionkrát).

Tento problém se již podařilo do značné míry vyřešit vhodnými technologickými postupy. Porézní křemík se dnes připravuje pro účely elektroluminiscence ve formě velmi tenkého (asi 1 mm) přechodu P–N, v němž nositelé elektrického proudu (elektrony a díry), postupující vstřícně z protilehlých stran, mají přece jenom nezanedbatelnou šanci se navzájem potkat a rekombinovat s vyzářením fotonu viditelného světla (princip přechodu P–N a jeho elektroluminiscence je vyložen v rámečku). Poměrně nízký počet elektronů a děr, který je nevyhnutelným důsledkem nízké elektrické vodivosti, je kompenzován vysokou účinností aktu zářivé rekombinace.

Takto připravená polovodičová dioda skutečně emituje pod přiloženým elektrickým napětím červené luminiscenční záření (viz obr. obrázek). Záření je docela silné, jasně pozorovatelné pouhým okem. Je však tato elektroluminiscenční dioda z porézního křemíku dostatečně účinná? Měření ukazují, že k vyzáření jednoho fotonu je třeba asi 500 párů elektron–díra, vháněných do součástky z vnějšího obvodu. Neboli, vnější kvantová účinnost η je kolem 0,2 % (v ideálním případě η=1). To je stále asi desetkrát méně, než je třeba pro komerční využití, ale zároveň je to úctyhodný pokrok ve srovnání s prvními podobnými diodami z let 1992 a 1993, které vykazovaly účinnost zhruba 10 000krát menší.

Několikanásobné zvýšení účinnosti ale není poslední překážkou. Přetrvává ještě další závažný problém – špatná dlouhodobá stabilita materiálu. Diody z porézního křemíku trpí tím, že jimi vyzařovaný světelný výkon poměrně rychle klesá s časem. Nejdelší publikovaná životnost je dnes asi 100 hodin, ale některé typy diod vyhasínají již po minutách. Příčinou je zřejmě porézní struktura materiálu, který má obrovský vnitřní povrch. Proto na něm dochází k nevratným fyzikálně-chemickým změnám působením světla, zvýšené provozní teploty, elektrického pole a vzdušného kyslíku. Změny pak vedou k degradaci materiálu.

Navzdory problémům se optoelektronické použití křemíku pomalu stává realitou. Červené elektroluminiscenční diody z křemíku jsou na světě – a to je úspěch. Skupina vědců z Univerzity v Rochesteru, vedená P. Fauchetem, nedávno dokonce oznámila první úspěšnou realizaci svítících plošek – diod z porézního křemíku – na klasickém integrovaném obvodu (Nature 384, 338–341, 1996). Lze předpokládat, že i obtížné problémy se zvýšením účinnosti a stability se brzy vyřeší a cesta ke komerčnímu využití křemíkových diod bude volná. Ani historie polovodičových laserů nebyla jednoduchá. V šedesátých letech pracovaly první laboratorní prototypy injekčních polovodičových laserů na přechodu p–n pouze za nízkých teplot (77 K) a měly životnost měřenou v sekundách či minutách. Následující bouřlivý rozvoj fyziky a technologie polovodičů však vedl k tomu, že dnešní polovodičové lasery představují běžnou, komerčně dostupnou elektronickou součástku a jejich životnost se počítá na tisíce hodin.

Známý fyzik D. A. B. Miller ve svém komentáři k citovanému článku v Nature říká: Roste naděje, že světlo na konci křemíkového tunelu není od odjíždějícího vlaku. 2)

Obrázky

Poznámky

1) Proč je porézní křemík účinným luminiscenčním materiálem, dodnes přesně nevíme (!). Nicméně základní modelové představy lze nalézt v našem předchozím článku.

Přechod PN a injekční elektroluminiscence


Polovodiče, jak název napovídá, jsou materiály, jejichž vlastnosti jsou někde mezi kovy a izolanty. Čistý dokonalý krystal polovodičového materiálu se bude při pomyslné absolutní nule teploty chovat jako izolátor nebudou v něm volné vodivostní elektrony. Všechny elektrony jsou v takzvaném valenčním energetickém stavu. S růstem teploty nebo třeba osvětlením polovodiče mohou elektrony získat dostatečnou energii, která jim umožní překonat energetickou bariéru (pás zakázaných energií) a dostat se do vodivostního stavu. Pak se mohou pohybovat krystalem a vést elektrický proud. Neobsazený energetický stav, který zbyl ve valenčním pásu po uniklém elektronu, se nazývá díra. Ta se také může pohybovat krystalem a můžeme na ni do jisté míry pohlížet jako na částici nesoucí kladný elementární náboj. Při přiložení elektrického pole se budou elektrony a díry v krystalu (vzhledem k opačnému znaménku náboje) pohybovat opačným směrem a společně se podílet na elektrickém proudu.

Možnost získat vodivostní elektrony tepelnou excitací velmi klesá s rostoucí šířkou zakázaného pásu. Vlastní vodivost polovodiče se širokým zakázaným pásem je malá. Volné nosiče náboje (elektrony nebo díry) lze ovšem dodat přidáním vhodné příměsi do krystalu polovodiče v tom případě mluvíme o příměsové vodivosti. Jestliže se příměsové atomy zabudují do krystalu tak, že nahradí původní atom v krystalové mříži, ale přitom mají jiný počet vazebních elektronů, než je počet vazeb se sousedními atomy, naruší se rovnováha v počtu vodivostních elektronů a děr. Vezměme si konkrétní případ křemíku. Jeho krystal má strukturu stejnou jako diamant, každý atom je vázán se čtyřmi sousedy. Zastoupí-li místo jednoho atomu křemíku atom jiného prvku s pěti vazebnými elektrony (např. fosfor nebo arzen), uvolní se přebytečný nevázaný elektron a účastní se vedení proudu. Takto legovaný polovodič má převahu vodivostních elektronů nad dírami a označuje se jako polovodič typu N. V případě, že příměsový atom má naopak pouze 3 vazební elektrony (např. bor nebo indium),  jeden elektron z krystalu musí být odebrán k doplnění chybějící vazby. Pak převládnou díry nad elektrony a jde o polovodič typu P.  Spojením polovodičů typu P a N vzniká přechod P-N, který je podstatou polovodičových diod, neboť má usměrňující vlastnosti pouští elektrický proud pouze v jednom směru.

A teď obraťme svou pozornost k svícení polovodičů. Elektron nacházející se ve vodivostním stavu může přejít zpět na nižší energii ve valenčním pásu buď přímou rekombinací s dírou za vyzáření fotonu, nebo nezářivě předáním energie krystalu v podobě tepelných kmitů. Vysoká účinnost zářivé rekombinace elektron-děrových párů závisí zejména na typu polovodiče, ale také na tom, jestli je dostatečný počet elektronů ve vodivostním pásu a zároveň dostatek volných stavů děr ve valenčním pásu. Takový stav polovodiče je však velmi nerovnovážný, nestálý a těžko dosažitelný. A zde přichází na pomoc přechod PN. Při připojení vnějšího napětí v propustném směru (kladný pól na typ P, záporný na N) pronikají elektrony z oblasti N do P a díry opačně. Tak vzniká na rozhraní malá oblast, kde je vysoká koncentrace jak vodivostních elektronů, tak děr (obr. 1Obrázek), což zvýhodňuje zářivou rekombinaci. Na tomto principu pracují běžné svítící elektroluminiscenční diody i ty, které jsou připraveny na bázi porézního křemíku.

Ke stažení

OBORY A KLÍČOVÁ SLOVA: Technické vědy

O autorech

Ivan Pelant

Jan Valenta

Nenad Lalic

Jan Linnros

Doporučujeme

Exploze, které tvoří

Exploze, které tvoří uzamčeno

Supernovy vytvářejí v mezihvězdném prostředí bubliny. V hustých stěnách bublin vznikají hvězdy. A to, co začalo výbuchem, končí hvězdou.
Mrtví termiti odpovídají na evoluční otázky

Mrtví termiti odpovídají na evoluční otázky uzamčeno

Aleš Buček, Jakub Prokop  |  6. 1. 2025
Termiti představují odhadem čtvrtinu globální biomasy suchozemských členovců. Naší snahou je pochopit, jak dosáhli ekologického úspěchu, jak se...
Objev země Františka Josefa

Objev země Františka Josefa

Zdeněk Lyčka  |  6. 1. 2025
Soukromá rakousko-uherská polární výprava v letech 1872–1874 nedosáhla zamýšleného cíle, jímž bylo proplout Severní mořskou cestou a případně...