Aktuální číslo:

2020/11

Téma měsíce:

Skladování energie

Jak záření ve vodním okně využít v biologii?

 |  10. 9. 2009
 |  Vesmír 88, 532, 2009/9

Při zkoumání struktury organických vzorků je nejdůležitější, aby zůstala zachována povaha buněk. Na elektronovém mikroskopu, ale i v jiných přístrojích bývá vzorek umístěn ve vakuu. Za nízkého tlaku by voda začala v buňkách ihned vřít, a tím by je poškodila. Tomu lze zabránit zmrazením, a má-li se předejít krystalizaci vody v buňkách, je nutné ochladit preparát co nejrychleji. (Pozn. rec.: V posledních letech se situace trochu zlepšila díky vynálezu enviromentálního elektronového mikroskopu, který otevřel nové možnosti. Např. ve firmě Delong Instruments v Brně byl vyvinut a je vyráběn rastrovací elektronový mikroskop pracující s mírným vakuem a urychlovacím napětím pouze několik kV. To umožňuje elektronovou mikroskopii i neupravených biologických vzorků.)

Další překážkou pro zkoumání mikroskopické struktury organických vzorků obsahujících vodu je absorpce záření v oblasti kratších vlnových délek, než má viditelné světlo. V tom směru jsou pro experimentální biology atraktivní zdroje XUV záření (x-ray ultra violet) pracující v oblasti vodního okna – tj. v intervalu vlnových délek od 2,3 nm do 4,4 nm (na rozhraní ultrafialového a rentgenového záření). Proteiny v buňkách obsahují zejména uhlík, dusík, kyslík a vodík. XUV záření ve vodním okně pohlcuje hlavně uhlík a dusík, ale nikoli kyslík a vodík. Proto je voda v tomto intervalu poměrně propustná, což nabízí možnost kontrastně pozorovat vlastnosti proteinů na pozadí živých buněk (tedy té části buněk, která je složena převážně z vody).

Během experimentů provedených na Univerzitě v Haifě byly použity zdroje, které intenzivně vyzařují právě v oblasti vodního okna. Posloužil k tomu výboj v kapiláře plněné dusíkem neboli „kapilární pinč“. Keramická kapilára o délce několika cm se naplní vhodným plynem o nízkém tlaku, a když se k otvorům kapiláry přivede vysoké napětí, proběhne uvnitř elektrický výboj. Stlačením (pinch = sevření, stisknutí) plazmatu vzroste v kapiláře teplota i tlak. Asi půl mikrosekundy je plazma zdrojem intenzivního záření. Za vhodných podmínek může dojít dokonce k stimulované emisi, a tím k laserové akci. Na tomto principu již funguje řada zdrojů po celém světě, nicméně se zatím nikomu nepodařilo dosáhnout stimulované emise ve vodním okně.

V nově vzniklé laboratoři Fakulty biomedicínského inženýrství ČVUT se tým pracovníků po spolupráci s izraelskými kolegy zabývá aplikacemi XUV záření v biologických experimentech. K tomu účelu byl na Fakultě jaderné a fyzikálně inženýrské vyvinut kapilární zdroj plněný dusíkem a pracující v oblasti vodního okna. Pro optimalizaci vlastností výstupního svazku se rovněž využívají počítačová simulace plazmatu a XUV spektrální diagnostika.

Ke stažení

OBORY A KLÍČOVÁ SLOVA: Fyzika
RUBRIKA: Aktuality

O autorovi

Petr Kolář

RNDr. Petr Kolář (*1961) vystudoval matematickou informatiku na Univerzitě Palackého v Olomouci. Ve Filozofickém ústavu Akademie věd ČR se zabývá filozofickou logikou.

Doporučujeme

Mládě z umělé dělohy

Mládě z umělé dělohy audio

Jaroslav Petr  |  16. 11. 2020
Průlomový počin v oboru tkáňového inženýrství se podařil týmu Anthonyho Ataly z amerického Wake Forest Institute for Regenerative Medicine. V...
Lithium, dar Země modernímu člověku

Lithium, dar Země modernímu člověku

Jan Rohovec, Tomáš Navrátil  |  2. 11. 2020
Nepozorovaně jsme přijali za své lehké notebooky, tenké mobilní telefony, drobnou elektroniku. Přestala nás udivovat možnost opakovaně nabíjet a...
Největší pískovcová skalní oblast Evropy

Největší pískovcová skalní oblast Evropy

Handrij Härtel  |  2. 11. 2020
V českém kontextu je České Švýcarsko jen jedno z několika skalních měst. V Evropě je to unikát. Ve světovém měřítku ho „zastiňují“ jiné oblasti....

Předplatným pomůžete zajistit budoucnost Vesmíru

Tištěná i elektronická
verze časopisu
Digitální archiv
od roku 1994
Speciální nabídka
pro školy a studenty

 

Objednat předplatné