Mají klasické žárovky ještě naději?
| 10. 12. 2009Podle autoritativních a ne vždy zasvěcených rozhodnutí EU nemají, podle fyziků ano. Klasické žárovky mají být již v dohledné době nahrazeny úspornějšími zářivkami. Spektrální složení světla ze zářivek však není každému příjemné a na krátké posvícení a zhasnutí se zářivky nehodí vůbec.
Fyzikové z Rochesteru proto zkoumali, jak může intenzivní laserový pulz změnit strukturu povrchu kovu. Když kov (wolfram) ozařovali velmi krátkými laserovými pulzy (10–15 s), povrch výrazně zčernal, což znamená, že prudce vzrostla jeho schopnost absorbovat světlo. A podle Kirchhoffova zákona se ve stavu tepelné rovnováhy schopnost povrchu absorbovat rovná schopnosti vyzařovat světlo. Odtud už je jen krůček k zvýšení emise světla z kovového vlákna klasické žárovky.
Zmíněná cesta je sice krátká, ale strmá a plná technologických výmolů. Růst účinnosti emise světla závisí například na počtu laserových pulzů. Do 500 pulzů účinnost výrazně roste, pak až do 4000 zůstává stejná. Pod řádkovacím elektronovým mikroskopem se ukázalo, že laserové záření vytvoří na povrchu wolframového vlákna periodické vlnité struktury rozměru nanometrů, a právě tyto vlny se významně podílejí na zvyšování emise vlákna. Fyzikové Chunlei Guo, A. Y. Vorobyev a V. S. Makin jsou přesvědčeni, že vhodnými nanotechnologickými úpravami povrchu vlákna, které potlačí infračervenou složku záření, lze dosáhnout v celém viditelném rozsahu prakticky stoprocentní účinnosti emise. Intenzita a délka laserových pulzů může ovlivnit i barevné spektrum emitovaného světla. Navíc světlo může být polarizované a to má řadu aplikací – od displejů z kapalných krystalů až po výrobu slunečních brýlí s polarizovanými skly. (Phys. Rev. Lett. 102, 234301, 2009/23; DOI: 10.1103/PhysRevLett.102.234301)
Ke stažení
- článek ve formátu pdf [300,02 kB]