Aktuální číslo:

2018/10

Téma měsíce:

Navigace

Molekuly na povel I.

Jak můžeme molekuly DNA stříhat a zase spojovat
 |  5. 5. 1998
 |  Vesmír 77, 257, 1998/5
 |  Seriál: Molekuly na povel, 1. díl (Následující)

V novinách i nejrůznějších časopisech se často dočítáme o úžasných úspěších molekulární biologie, genetiky, biotechnologií a dalších podobných věd. S překvapením zjišťujeme, že byly objeveny geny paměti, alkoholizmu, schizofrenie, schopnosti učení, a je nám jasné, že za chvíli bude objeven i gen optimizmu, charizmatu či sklonů k prostopášnosti. Vědci zřejmě zcela nekontrolovaně v laboratořích klonují každé zvíře, které jim přijde pod ruku, vyrábějí chimérická zvířátka s ušima na břiše a oživují dávno vymřelé organizmy.

Skutečnost je daleko prozaičtější a zároveň mnohem zajímavější. Molekulární biolog je většinou úplně obyčejný člověk, který ovšem zkoumá něco neviditelného, něco, o jehož existenci a podobě se dovídá pouze prostřednictvím řady detekčních technik. Jeho práce je závislá na používaných metodách, které jsou většinou nesmírně složité a technicky, časově i finančně náročné. Za celý svůj život i velmi dobrý molekulární biolog dokonale zvládne jen některé z existujících technik, jejichž spektrum se navíc neustále rozšiřuje.

Ačkoliv prováděcí předpisy metod molekulární biologie jsou většinou k uzoufání komplikované, princip používaných metod je průzračně jednoduchý. Zkusme se tedy podívat, co vlastně ti molekulárníci v laboratořích provádějí. Není třeba se bát, že to obyčejný smrtelník nedokáže pochopit. Už to, že jste dočetli text až sem, svědčí o vaší dostatečné kvalifikaci – molekulární biolog totiž ke své práci potřebuje znát pouze 4 písmena: A, G, C a T.

Několik užitečných vlastností DNA

Objektem zájmu molekulárních biologů jsou bílkoviny a nukleové kyseliny (nukleové znamená jaderné a ony se skutečně vyskytují v jádře, i když nejenom tam). Nechme bílkoviny prozatím stranou a soustřeďme svůj zájem na nukleové kyseliny, které se v organizmech vyskytují ve dvou podobách. Obě mají podobnou strukturu, složení i vlastnosti a liší se jen v drobných, ale podstatných detailech. Kostra ribonukleové kyseliny (RNA) je tvořena cukrem ribózou, zatímco u deoxyribonukleové kyseliny najdeme kupodivu deoxyribózu. Drobný chemický rozdíl mezi těmito dvěma molekulami způsbuje, že RNA je mnohem reaktivnější a méně stabilní než DNA. Proto je jako trvalý dědičný materiál v buňce používána DNA, zatímco RNA slouží jako poslíček na přenos a zprostředkování údajů z DNA. Jednotlivé molekuly cukru jsou u nukleových kyselin spojeny pomocí fosfátového zbytku a na každý cukr je navázána jedna molekula dusíkaté sloučeniny – báze. Základní jsou čtyři báze, označované jako A – adenin, G – guanin, C – cytozin a T – tymin, které najdeme u DNA. Nicméně znalost těchto čtyř písmen molekulárnímu biologovi přece jenom nestačí. V RNA je totiž místo tyminu báze uracil – U, která se ovšem chová jako úplně prachobyčejný tymin. Cukr s navázanou bází a fosfátem se nazývá nukleotid, a každá molekula nukleových kyselin je tedy vlastně polynukleotid – prostě moc nukleotidů za sebou. Pořadí nukleotidů v molekule je onou závažnou genetickou informací, která určuje vaši plešatost, barvu očí, počet rukou a kdovíco ještě.

Jednotlivé nukleotidy se mohou spojovat nejenom do řad za sebou pomocí fosfátů, ale také se mohou chytit napřaženými ručičkami bází. Tato vazba je slabá a funguje dobře pouze tehdy, když je těch ručiček dostatek. Jak známe i z vlastního života, nemůže se ovšem za ručičku držet každý s každým. Pro nukleové kyseliny platí pravidlo, že se drží jen adenin s tyminem (nebo uracilem) a druhou dvojici tvoří jen cytozin s guaninem. Dodržování tohoto pravidla je pojištěno docela jednoduše – adenin, tymin a uracil mají dvě ručičky a pasují tedy pouze k sobě, zatímco trojručičkový guanin má na vybranou jenom cytozin, taktéž s třemi ručkami. A protože tři ruce jsou více než dvě, je vazba mezi guaninem a cytozinem o něco silnější.

Spojení molekul nukleových kyselin do dvouřetězce je možné pouze tam, kde jsou proti sobě ty báze, které se umějí držet za ručičky. A protože je vazba mezi bázemi poměrně slabá, nestačí k udržení molekul jenom jedna nebo dvě dvojice.

Této vlastnosti řetězců se říká komplementarita (doplňkovost) a je jednou z nejzajímavějších vlastností nukleových kyselin – umožňuje totiž jejich rozmnožování.

Jen díky tomu, že před každým rozdělením buňky na dvě nové dojde ke zdvojení genetického materiálu, může se dědičná informace dědit.

Stříhání a štípání

Opravdový rozmach molekulární biologie, tedy přesněji kejklů s nukleovými kyselinami, byl umožněn objevem restrikčních endonukleáz. Tito vnitromolekuloví střihači nukleových kyselin (téměř přesný překlad jejich názvu) pocházejí z bakterií, kde mají zcela speciální a mimochodem velmi zajímavou úlohu – rozstříhají každou cizí nukleovou kyselinu, která náhodou vleze do buňky. Během 70. let bylo objeveno obrovské množství restriktáz z nejrůznějších bakterií. Nejzajímavější jsou ovšem restriktázy II. typu, které dovedou stříhat DNA v úplně přesném místě. Vždycky v molekule najdou stejné místo, kde přeruší vazbu mezi cukrem a fosfátem a zanechají po sobě pouze dva volné konce. Rozeznávané místo ovšem nemůže být jen tak ledajaké. Vždy má jednu zajímavou vlastnost – čteme-li ho protisměrně na obou řetězcích, zjistíme, že má stejné pořadí bází. Takové oblasti dvoušroubovice DNA říkáme palindrom. Jen takové místo dovedou restriktázy II. typu najít. Takto například vypadá místo a zásah restriktázy EcoRI, která byla izolována z bakterie Escherichia coli, kmene R.

To, co po ní zůstalo, se jmenuje lepivé konce, protože se to může přilepit k jakékoliv jednořetězcové molekule se stejným pořadím nukleotidů.

Jiná restriktáza BstUI z mikroorganizmu Bacillus stearothermophillus, kmene U, po sobě zanechá jiné stopy. Vzniklý konec se jmenuje tupý a myslím, že je zřejmé proč.

Dnes známe už řadu restriktáz, které štěpí na nejrůznějších místech. Díky jejich činnosti můžeme rozsekat dlouhé molekuly DNA na různé kousky, které mají konce o známém pořadí nukleotidů. K čemu nám ale takové kousíčky molekul vlastně jsou?

Spojování a lepení

Restriktázy by samozřejmě nikdy nedosáhly takové slávy, kdyby neexistovaly jejich protějšky – ligázy, které umějí kousky molekul zase spojit. Restriktáza rozbije vazbu mezi cukrem a fosfátem, ligáza ji zase spojí. Musíme jí k tomu samozřejmě vytvořit vhodné podmínky a dodat energii. Hlavně ale musíme spojovat molekuly, jejichž konce k sobě patří. Lze tedy spojit pouze kousky DNA vzniklé štěpením restriktázou EcoRI, a nikoliv vzniklé po štěpení EcoRI a BstUI. Jinak k sobě naštěpené kousíčky prostě nepasují.

To ovšem neplatí jenom pro spojování lepivých a tupých konců, ale i pro spojování dvou lepivých konců s různým pořadím nukleotidů. Jakmile přečnívající ocásky nejsou komplementární, tedy pořadí bází sobě neodpovídá, nemohou se báze lepivých konců chytit za ručičky a ligáza nemá co spojovat.

Stejně jako výše zmiňované restriktázy, i ligázy jsou zcela běžnými enzymy buněk, tentokrát dokonce nejenom bakteriálních. Bez nich by vůbec celá ta mašinérie DNA v buňce nefungovala. My jsme je pouze poznali, porozuměli jejich činnosti a naučili se je využívat.

K čemu to celé vlastně je?

Díky restriktázám můžeme jakoukoliv DNA naštěpit na menší molekuly s definovanými konci. Díky ligázám spolu dovedeme kousky se shodnými konci spojit. Trik spočívá v tom, že můžeme spojit jakoukoliv DNA z jakéhokoliv organizmu s molekulou pocházející z jakéhokoliv organizmu jiného. Stačí, když mají spojované kousky stejné konce. A tak můžeme kousek molekuly DNA, který v člověčích buňkách vydává instrukce k výrobě inzulinu, spojit s kouskem DNA, který umožní jeho udržení v bakteriích. Když pak takovouto pospojovanou, chimérickou, rekombinantní DNA, vzniklou z kousků molekul dvou různých organizmů, přeneseme do bakterií (a ještě s tím provedeme nějaké další složité kejkle), můžeme docílit toho, že nebohé bakterie začnou ve velkém vyrábět inzulin. No, a hádejte, jak se dneska (nejenom) inzulin vyrábí.

Štěpení a spojování molekul DNA je základní metodou molekulární biologie a představuje vstupní bránu k dalším technikám. Projděte si ještě jednou celý článek – není to jednoduché? 1)

Poznámky

1) Tento výzkum je hrazen částečně z grantu GA ČR 30251/1996

Ke stažení

OBORY A KLÍČOVÁ SLOVA: Molekulární biologie

O autorovi

Zuzana Storchová

Prof. Zuzana Storchová, Ph.D., (*1970) v roce 1989 obsadila 17. až 20. místo biologické olympiády. Vystudovala PřF UK Praha. Po doktorandském studiu u Vladimíra Vondrejse zamířila na dva roky do Curychu, kde se věnovala studiu postreplikativních oprav DNA. Od roku 2001 do roku 2007 pracovala na Dana Farber Cancer Institute/Harvard Medical School v Bostonu na projektu zaměřeném na studium polyploidie v kvasinkách. Od r. 2008 vede pracovní skupinu v Ústavu Maxe Plancka pro biochemii v Martinsriedu u Mnichova. Její skupina studuje vliv abnormálního počtu chromozomů na lidské buňky. V roce 2016 byla jmenována profesorkou molekulární genetiky na Technické univerzitě v Kaiserslauternu.

Doporučujeme

Vlaštovka extrémista

Vlaštovka extrémista

Jaroslav Cepák, Petr Klvaňa  |  10. 10. 2018
Díky satelitní telemetrii se podařilo odhalit vpravdě neuvěřitelné výkony některých ptačích druhů. Nejznámějším je zřejmě osmidenní nonstop let...
Velké umění astronavigace: Od astrolábu po sextant

Velké umění astronavigace: Od astrolábu po sextant

Petr Scheirich  |  1. 10. 2018
Staří mořeplavci prý určovali polohu své lodi podle hvězd. Tato rozšířená romantická představa je ale nesprávná. Metoda astronavigace nikdy nebyla...
Jak se neztratit na moři

Jak se neztratit na moři

Petr Scheirich  |  1. 10. 2018
Dle znamenitého pozorování Slunce a Měsíce shledávám naši zeměpisnou délku 178° 18' 30" západně od Greenwiche. Zeměpisná délka dle logu je 175°...

Předplatným pomůžete zajistit budoucnost Vesmíru

Tištěná i elektronická
verze časopisu
Digitální archiv
od roku 1994
Speciální nabídka
pro školy a studenty

 

Objednat předplatné