Akcelerace biologické pumpy v chladicím systému Země
... já furt žíkat Méděný, Cinofý, Olófěný, von je Šélesný...
Josef Hašek: Osudy dobrého vojáka Švejka
Po studeném létu loňského roku zní hyperbola oceánografa Johna H. Martina z kalifornských Moss Landing Marine Laboratories „Dejte mi plný tanker železa a vyvolám vám dobu ledovou“ jako výhrůžka teroristy. Nešlo mu o loď plnou šrotu, ale o možnost dodat do oceánů železo v podobě podporující růst planktonických řas. Ovšem počátkem devadesátých let, kdy v masmédiích řada klimatologů bila na poplach z obavy z globálního oteplování, to byla naděje. Dokonce příslib podložený teoretickými předpoklady. Riziko, že růst koncentrace skleníkových plynů vyvolá globální oteplení, které by mohlo vést mimo jiné k rozšiřování pouští a tání ledovců, doprovázenému zaplavením přímořských nížin, stále existuje. Zastánci Lovelockovy hypotézy Gáia (viz Vesmír 70, 545, 1991/10) mohou věřit, že homeostatické mechanizmy biosféry nedopustí takové klimatické změny, které by ohrozily existenci života na Zemi. Ovšem historie života na Zemi ukazuje, že „Gáia“ občas uřezává větve svým dětem i sama. Někdy před 2,5 – 2 miliardami let se začala vehementně prosazovat efektivní fotosyntéza, při které se ukládají odpadní elektrony do kyslíku. Když „superorganizmus Gáia“ přecházel díky této inovaci z „larválního stadia“ s atmosférou téměř bez kyslíku do vyzrálejšího ontogenetického stadia s atmosférou obsahující kyslík (tedy z hlediska většiny tehdejších organizmů otrávenou), padlo jistě za oběť hodně vývojových linií. Podle koncepce Gáia by to měla být zřejmě daň za přístup k efektivnějším aerobním metabolickým procesům. Obětovat náš druh (Homo sapiens) pro vizi efektivnější budoucnosti se nám ovšem moc nechce. Současná lidská civilizace by asi posuny klimatických pásem a změny úrovně hladiny oceánu těžko absorbovala, je citlivější než život jako celek. Spoléhat tedy na biosféru (Gáiu), že nás podrží, je riskantní. Klimatické prognózy globálního oteplování a jeho případného vztahu k skleníkovému efektu sice nejsou zdaleka jednoznačné, ale pro jistotu je užitečné být vždy připraven. Máme k dispozici nějaký nástroj, jak snížit koncentraci skleníkových plynů? Nejjednodušší by bylo omezit jejich antropogenní produkci. Zatím to jde pomalu. Za sto dvě stě let to jistě nebude problém, zásoby fosilních paliv se téměř neobnovují a časem se vyčerpají. Pro bližší časový horizont se teoreticky nabízí jiná zajímavá alternativa: zrychlit odčerpávání některého skleníkového plynu z atmosféry. Možnost takového geoinženýrského zásahu testují ve svém důsledku pokusy s „hnojením“ otevřeného oceánu železem, zveřejněné v Nature 383, 495, 1996. Mohlo by nám železo pomoci vyvětrat náš „skleník“?
Důležitým skleníkovým plynem, který omezuje průnik tepelného záření atmosférou do prostoru, je oxid uhličitý. Jeho obsah v atmosféře je ovlivňován rychlostí přenosu v globálním biogeochemickém cyklu uhlíku. K hlavním procesům v tomto cyklu patří:Roční nárůst koncentrace CO2 v atmosféře odpovídá rozdílu mezi uvolňováním CO2 (dýcháním, rozkladem organické hmoty, spalováním fosilních paliv a vulkanickou činností) a pohlcováním oceánem i biosférou. Předpokládá se, že oceány absorbují přibližně 40 – 50 % současné roční produkce vznikající spalováním fosilních paliv. Důležitým tokem odčerpávajícím CO2 z atmosféry je jeho fotosyntetická asimilace do biomasy. V tomto článku nás bude zajímat hlavně mořský planktonický ekosystém, i když v něm probíhá jen asi polovina oceánické fotosyntézy. Druhá polovina pochází z relativně úzké, ale vysoce produktivní příbřežní zóny (viz obr. na str.
Poznatek, že růst fytoplanktonu v oblastech s vysokým obsahem ostatních živin a malou primární produktivitou vyvolává nedostatek železa, nazval John Martin „železová hypotéza“. Protože do oceánů se potřebné železo dostává z kontinentů, ať již s vodou nebo větrem, jsou oblasti nasycené železem poblíž pevnin nebo tam, kam zanášejí větry dostatek prachu (např. v rovníkovém Atlantském oceánu je to prach ze Sahary).
Zajímavé doklady o vztahu mezi klimatem a větrným transportem železa poskytuje poslední doba ledová. Analýzy vzduchu uzavřeného v jednotlivých vrstvičkách několik kilometrů mocného antarktického ledovce provrtaného u stanice Vostok ukázaly, že před 18 000 lety, kdy poslední doba ledová vrcholila, byla v atmosféře významně nižší koncentrace oxidu uhličitého než dnes – 200 ppm oproti 280 ppm v době před průmyslovou revolucí nebo oproti současným 355 ppm. Během předchozí doby meziledové se koncentrace CO2 pohybovaly na obdobné úrovni jako v preindustriálním období. Badatele v této souvislosti zaujalo, že snížení obsahu CO2 koreluje se zvýšeným množstvím prachu v ledu. Prachu přineseného do Antarktidy především z Patagonie, kde v době ledové chyběl vegetační kryt bránící větrné erozi. Velká množství prachu byla transportována i z jiných oblastí ležících v předpolí kontinentálních ledovců. Vrty v antarktickém a grónském ledovci svědčí o třicetinásobném zvýšení transportu prachu během posledního glaciálního maxima ve srovnání s dobou meziledovou. Větrem transportovaný prach se usazoval zčásti na kontinentech, kde vytvářel někdy i desítky metrů mocné závěje spraší, část jej byla deponována v oblasti oceánů. Tam, kde byl v oceánech dostatek živin a jejich využití fytoplanktonem bránil pouze nedostatek železa, došlo k značnému zvýšení primární produktivity. Déšť částeček organické hmoty padající ze svrchní části oceánů ke dnu zhoustl. Svědčí o tom zvýšený obsah organického uhlíku zjištěný v sedimentech usazovaných v té době okolo Antarktidy.
Druhý experiment IronEx II proběhl v květnu 1995 také jihozápadně od Galapážského souostroví. Železo bylo injektováno na ploše 72 km2 během týdne ve třech dávkách (225, 112, 112 kg), opět ve formě roztoku kyselého síranu železnatého. Skvrna obohacená železem si celých 19 dní pokusného měření zachovala integritu, přestože se za tu dobu přesunula o 1 500 km. Odezva byla téměř okamžitá a na první pohled rozpoznatelná podle intenzivního zezelenání vody. „Je to jako cestovat přes Mohavskou poušť a octnout se v deštném pralese,“ komentoval to vedoucí projektu Kenneth H. Coale. Rychlost dělení buněk fytoplanktonu se ve srovnání s okolím skvrny zvýšila dvakrát, množství fytoplanktonu vzrostlo až 20krát. Nejvíce se zvýšila biomasa rozsivek. Množství odčerpávaného NO3– stouplo 5 – 7krát. Z hlediska geoinženýrství mělo význam výrazné snížení koncentrace CO2 v povrchové vodě. Gravitační transport částeček organické hmoty klesajících do hloubky se zvětšil, a tím se snížil parciální tlak CO2 v centru skvrny a až o 60 % se snížil tok CO2 z povrchu oceánu do atmosféry. Zatímco ostatní hodnoty (Fe, chlorofyl aj.) se devatenáctý den od první aplikace železa vrátily na původní úroveň, snížení parciálního tlaku CO2 přetrvávalo.
![](/images/gallery/archiv/1997/4/akcelerace-biologicke-pumpy-v-chladicim-systemu-zeme/page/s_1997_185_02.jpg)
Literatura
Coale K.H. et al.: A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501, 1996Denman K., Hofmann E., Marchant H.: Marine biotic responses and feedbacks to climate change. – V: Houghton J.T. et al. (eds.): Climate change 1995: The science of climate change. Cambridge Univ. Press. 1996
Chisolm S.W.: The iron hypothesis: Basic research meets environmental policy. Rev. Geophys. Vol. 33 Suppl., 1995
Monastersky R.: Iron versus the Greenhouse. Oceanographers cautiously explore a global warming therapy. Science News, vol. 148, p. 220., 1995