O šíření signálů v živých organizmech
Každému z vás už se asi někdy stalo, že se neopatrně přiblížil příliš blízko k ohni a spálil si ruku či nohu. Přitom jste si jistě všimli, že ta přiškvařená ruka či noha sama od sebe ucukla. To ucuknutí už bylo jaksi bezděčné, nemohli jste za ně, provedlo se bez vaší vůle, a proběhlo by i proti ní. O tom, jaké asi signály se během této krátké chvilky v organizmu aktivují, uvažoval René Descartes (Renatus Cartesius, 1596 - 1650) již začátkem 17. století. V mládí Descartes hodně cestoval (r. 1620 byl i v Čechách) a přemýšlel, zejména o fyzice, matematice, filozofii a také trochu o fyziologii. Zdá se, že když se r. 1629 konečně usadil, měl již v hlavě ucelenou představu o svém budoucím vědeckém díle. Posledních dvacet let svého života, které kromě posledních 6 měsíců strávil v Holandsku, věnoval jen své vědě a psaní. Jeho dílo je neuvěřitelně bohaté a rozsáhlé. Zde uvedeme jen něco málo z jeho názorů z oblasti, která má asi nejblíže k tomu, co dnes nazýváme fyziologií. Najdeme je v díle, které nazval L'homme (Člověk) a vydal r. 1664 v Paříži.
Reflexy a rozeznívání zvonů aneb první představy o přenosu signálů v živém organizmu
Aby byl výklad názornější, pomáhal si Descartes obrázky. K tomu, který zde uveřejňujeme obrázek![](/images/gallery/archiv/1996/2/o-sireni-signalu-v-zivych-organizmech/page/s_1996_065_01.gif)
Galvani se zajímá o žabí stehýnka aneb nervy proudí elektřina
Descartes ovšem nemohl tušit, jaká je fyzikální podstata těchto signálů. Na to přišel až mnohem později Luigi Galvani (1737 - 1798). Mezníkem ve výzkumech tohoto všestranného lékaře (byl profesorem anatomie a pak gynekologie) se stal šestý listopad 1780. Galvani se v té době zabýval opakováním pokusů, které uveřejnili nedlouho předtím Otto von Guericke (1602 - 1686) a Gottfried Wilhelm Leibniz (1646 - 1716) a popsali v nich, jak lze elektrickým výbojem vyvolat svalovou kontrakci. Stejně jako v předchozích dnech, i tohoto památného dne použil Galvani k vyvolávání svalových kontrakcí Guerickova elektrostatického přístroje. Náhle si ale všiml, že když se skalpelem dotkne obnaženého nervu, a stačil jen zcela lehounký dotyk, žabí noha ležící na pitevním stole se pohne, aniž by byla jakkoliv propojena s Guerickovým přístrojem. Galvaniho i jeho kolegy, kteří u pokusu asistovali, tento jev vzrušil. Nebudeme zde popisovat všechny pokusy, které pak Galvani po dlouhá léta prováděl (některé jsou znázorněny na obrázku![](/images/gallery/archiv/1996/2/o-sireni-signalu-v-zivych-organizmech/page/s_1996_065_02.gif)
Helmholz měří rychlost šíření nervového impulzu a zjišťuje, že se šíří podezřele pomalu
Pak už se věci začaly hýbat přece jen o něco rychleji. Roku 1850 publikoval Hermann von Helmholtz (1821 - 1894) "Předběžnou zprávu o rychlosti nervového impulzu" 1) . V ní uvádí, že mezi okamžikem nervového podráždění a okamžikem, kdy toto podráždění vyvolá svalovou odpověď, uplyne určitý konečný časový interval. Z výsledků, které ve svém sdělení uvedl, lze spočítat, že rychlost vedení je 25 - 43 metrů za sekundu. Máte-li po ruce jakoukoliv příručku fyziologie, podívejte se, jaké hodnoty jsou v ní uvedeny pro rychlost vedení akčních potenciálů v žabích nervech. Ale protože tuším, že ji asi nemáte, raději vám to prozradím. Těmi nejmodernějšími elektrofyziologickými metodami bylo naměřeno 25 - 40 m/sec.Helmholz tedy zjistil, že elektrický signál se nervem šíří konečnou rychlostí a že tato rychlost je vlastně překvapivě pomalá. Běžnému smrtelníkovi, který denně přichází do styku s lidmi s pomalými reakcemi a dlouhým vedením, se to bude zdát samozřejmé. Pro vědátory tehdejší doby, kteří si nerv představovali jako elektrický kabel, to bylo překvapení a ptali se, jak je možné, že se v biologickém kabelu nešíří elektrické impulzy rychlostí toku elektrického proudu.
Bernstein změří průběh elektrické vlny a pak neví, kde se zmýlil aneb malý podvůdek velikého vědce
Na tuto otázku se podařilo odpovědět o několik let později Helmholzově žáku Juliu Bernsteinovi (1839 - 1917). Jeho vědecká dráha započala vlastně už v dětství - v chemické laboratoři, ve kterou si jeho otec postupně proměnil vlastní byt. Roku 1858 odešel na studia medicíny a po jejich ukončení nastoupil v Berlíně u Emila Du Bois-Reymonda. Tam získal doktorát, a po něm odešel do Heidelbergu pracovat jako asistent k Hermanu Helmholtzovi. Bernstein se zabýval mnoha problémy, jeho nejdůležitější objevy se však týkají bioelektrických jevů. Byl pravděpodobně první, komu se podařilo změřit a zaznamenat průběh signálu procházejícího nervem. Nazval jej elektrická vlna. Je téměř neuvěřitelné, jaké přesnosti ve svých experimentech dosáhl. Poměrně primitivními přístroji, které sám navrhoval a často i konstruoval, se mu podařilo změřit, že délka trvání elektrické vlny (kterou později Ludimar Hermann nazval akční proud a dnes se ustálil výraz akční potenciál, AP) je 0,7 msec, tedy méně než tisícina vteřiny. Na obrázku![](/images/gallery/archiv/1996/2/o-sireni-signalu-v-zivych-organizmech/page/s_1996_065_03.gif)
Bernsteinova teorie sice vysvětlovala, proč se vlna nervovými vlákny nepohybuje rychlostí šíření elektrického proudu, avšak nepodařilo se jí vysvětlit, proč ve svém maximu překmitává do pozitivních hodnot. Bernstein byl zklamán a když teorii elektrické vlny publikoval, dokonce k tomu poznamenal: "Důsledkem této teorie by bylo, že negativní vlna může dosáhnouti maximální limity, která by byla dána hodnotou membránového potenciálu..." Všimněte si podmiňovacího způsobu, který poukazuje na to, že si Bernstein nebyl svou teorií tak úplně jist. Nicméně ji uveřejnil, což znamenalo, že musí přijmout i její důsledky, a to i ten pro něho nejnepříjemnější, že elektrická vlna může dosáhnout nulové hodnoty, ale nemůže překmitnout do hodnot kladných. To se mu však vůbec nehodilo, a tak začal uvažovat, jak z toho problému vykličkovat.
Bernsteinovým vědeckým kličkováním se téměř o sto let později zabýval Harry Grundfest. Ve své pozoruhodné historické studii 3) upozornil, že v knížce "Elektrobiologie" 4) , kterou r. 1912 Bernstein vydal, lze na str. 44 najít jiný průběh elektrické vlny, jiný v tom, že její maximum dosahuje přesně nulové hodnoty (křivky na obrázku dole). Jak k tomu došlo? Bernstein výsledky svých pokusů nebyl schopen vysvětlit svou vlastní teorií. Kde však byla chyba, ve výsledcích, nebo v teorii? Bernstein váhal, ale pak si uvědomil, že v pokusech se svaly, které prováděl v roce 1871, jeho elektrická vlna nikdy kladných hodnot nedosáhla a že se její maximální hodnoty vždy nacházely někde kolem nuly. Bernstein odmítl hypotézu svého bývalého učitele Du Bois-Reymonda, podle které tento výsledek byl právě důležitou charakteristikou svalových vláken oproti vláknům nervovým. Tuto myšlenku ani přijmout nemohl, protože věřil, že jeho hypotéza má obecnou platnost pro všechny bioelektrické jevy. Pokračování si můžeme domyslet. Bernstein si nechtěl připustit, že by jeho teorie mohla být chybná. A tak se raději přiklonil k myšlence, že bylo cosi v nepořádku s jeho experimentálním uspořádáním a že překmit jeho elektrické vlny do pozitivních hodnot byl pouhý přelud. Roku 1913 tedy publikoval záznam bez překmitu. Vzhledem k jeho ostatním zásluhám a vědeckým objevům budiž mu tento "omyl" odpuštěn.
Hodgkin a Huxley objevují napěťový zámek aneb zrození nejuniverzálnější elektrofyziologické metody
Začátkem tohoto století bylo pak mnohokrát prokázáno, že akční potenciál (protože nyní již můžeme všechny předešlé termíny jako fluidum, elektrická vlna či akční proud zapomenout a nahradit je tímto dnes již zcela všeobecně používaným termínem) skutečně překmitává nulovou hladinu membránového potenciálu a svého maxima dosahuje zcela jasně v kladných hodnotách. Definitivní tečku za dalšími teoretickými spekulacemi učinili v padesátých letech tohoto století dva angličtí elektrofyziologové, A. L. Hodgkin a A. F. Huxley, pracující na univerzitě v Cambridge. Nebudeme se zde podrobně zabývat jejich bohatou vědeckou aktivitou, ale zaměříme se na jejich nejdůležitější objev - popsání mechanizmů vedoucích ke vzniku akčního potenciálu - za který byli v padesátých letech vyznamenáni Nobelovou cenou (pro zajímavost uveďme, že jeden z nich do dnešního dne neobhájil doktorskou práci).Hodgkin a Huxley nejprve vyvinuli revoluční metodu nazývanou metoda napěťového zámku, jejíž princip je dnes používán ve většině elektrofyziologických aplikací. Metoda jim umožnila změřit s vysokou přesností průběhy proudů, které během akčního potenciálu procházejí buněčnou membránou. Výsledky jim pak posloužily jako základ k odvození vztahů mezi membránovým potenciálem a propustností iontových kanálků, kterými tyto proudy protékají, a k vybudování matematické teorie, která tyto závislosti s vysokou přesností popisuje.
Sodíko-draslíková pumpa aneb jak se nabíjí buněčná baterie
Než se pustíme do popisu dějů provázejících vznik akčního potenciálu, připomeňme si, že buněčné membrány jsou vybaveny nesmírně důmyslným zařízením zvaným sodíko-draslíková pumpa (ve vědeckém žargonu enákačka), která neustále vyhání z buňky ven sodík a vhání dovnitř draslík. K tomu spotřebuje spoustu energie, ale to už je zase jiná historie. Výsledkem činnosti pumpy je, že venku se nashromáždí velké množství sodíku a uvnitř zase draslíku. Oba tyto ionty se snaží protlačit iontově selektivními kanály skrz membránu zpět, tam, odkud byly pumpou vyhnány. Jenže propustnosti těchto kanálů jsou při klidových hodnotách membránového potenciálu téměř nulové. Pumpa tedy pumpuje, sodík se hromadí vně a draslík uvnitř a oba ionty čekají na příležitost vrátit se tam, odkud je pumpa neustále přečerpává.Jak vzniká akční potenciál aneb zásadní úloha napěťově závislých iontových kanálů
Představme si nyní, že nějaký vnější podnět způsobí náhlou depolarizaci membránového potenciálu. Jak uvedeno výše, jsou propustnosti iontových kanálků napěťově závislé a s depolarizací se tedy prudce zvýší. A to je příležitost pro sodík i pro draslík, aby se se vší vehemencí vrátily tam, odkud je pumpa odčerpala a kam je přírodní síly tlačí. Ale pozor, napěťová závislost sodíkové a draslíkové permeability nejsou stejné. Sodíková propustnost se po změně membránového potenciálu zvýší téměř okamžitě, zatímco draslíková je o nějaký ten zlomek milisekundy pomalejší, a navíc potřebuje o něco větší depolarizaci, aby se zcela otevřela. Na první pohled by se mohlo zdát, že to nemůže hrát podstatnou roli. Ve skutečnosti má tento rozdíl kapitální význam. V okamžiku, kdy se zvýší sodíková permeabilita, začnou se sodíkové ionty hrnout do buňky. A protože každý z nich nese kladný náboj, depolarizace membrány se ještě zvýší a sodíkové kanály se ještě více otevřou. Sodíkové ionty tedy mohou dál nerušeně vstupovat do buňky, a to tak dlouho, dokud se nevynuluje sodíkový elektrochemický gradient a nezanikne síla, která je do buňky žene. Tento okamžik nastane, až když se membránový potenciál dostane na hodnoty mezi +20 a +40 mV. Zde je tedy vysvětlení, proč maximum akčního potenciálu dosahuje kladných hodnot.Ale co dělají během té doby draslíkové ionty? Jejich gradient je orientován opačně, měly by proto vytékat z buňky ven a tím přesun sodíkových nábojů kompenzovat. Jenže, jak jsme již řekli, aktivace draslíkových kanálů je liknavá, takže dříve, než se proberou z letargie a otevřou se doopravdy, je již akční potenciál blízko svého vrcholu. Proud draslíkových iontů z buňky už tedy jen pomáhá návratu membránového potenciálu zpět k jeho klidové hodnotě. Tou dobou už se začínají uzavírat sodíkové kanály, protože kromě napěťové závislosti jsou též závislé na čase, to znamená, že zůstávají otevřené jen po určitou velice krátkou dobu, a pak se samovolně uzavřou. Všechny děje, které jsme právě popsali, trvají všeho všudy asi tak jednu milisekundu, tedy tisícinu vteřiny. Z toho si můžete udělat představu, jak přesné a jemné byly elektrofyziologické metody, které s vysokou přesností dokázaly všechny tyto nepatrné elektrické jevy změřit na jedné jediné buňce. Tuto větu jsme napsali v minulém čase, protože dnes tyto proudy neměříme na jediné buňce, ale v jediném kanálku jediné buňky.