Arktida2024banner2Arktida2024banner2Arktida2024banner2Arktida2024banner2Arktida2024banner2Arktida2024banner2
i

Aktuální číslo:

2025/1

Téma měsíce:

Exploze

Obálka čísla

Minimální genom

Výprava k hranicím života
 |  4. 3. 2024
 |  Vesmír 103, 154, 2024/3

Zkoumáme-li podstatu života, nutně se dostaneme k problému, kde leží hranice mezi živým a neživým. Jaká je nejjednodušší entita, o které můžeme spolehlivě říci, že je živá? Kolik genů jí stačí k přežití? Na tyto a podobné otázky dokážou nejlépe odpovědět bioinformatické a molekulárněgenetické metody, ve kterých se hlavním objektem výzkumu stává genetická informace zapsaná v molekulách DNA.

Život na Zemi je úžasně různorodý. Jeho komplexnost ale z velké části stojí na složitosti genetické informace. Začněme několika přehledovými čísly. Lidská DNA obsahuje v haploidním stavu přibližně 3,3 miliardy párů bází (base pairs, bp), tedy pomyslných „písmenek“ genetického zápisu, a je v ní asi 23 tisíc genů, které kódují bílkoviny. V tom nijak nevybočujeme z typické velikosti savčího genomu. Ostatní obratlovci mají srovnatelný nebo o trochu menší počet genů. Hmyz je o něco úspornější. Většinou se vejde pod 20 tisíc genů. Také velikost jeho genomu bývá menší, mezi 100 až 500 miliony bp. Co do počtu „písmen“ genetického zápisu se prvenstvím mezi živočichy může (zatím) chlubit bahník australský (Neoceratodus forsteri), australská plicnatá ryba, která má s 43 miliardami bp asi čtrnáctkrát větší genom než člověk.

Jednobuněční prvoci mají DNA tvořenou zpravidla jen desítkami až stovkami milionů párů bází, ale jsou mezi nimi i organismy s genomy obrovskými nebo naopak titěrnými. Velký rozdíl ve velikosti genomů nalezneme také v rostlinné říši, od stovek milionů až po 15 miliard bp. Mnohem menší genomy mají bakterie a archea, typicky mezi 3 až 7 miliony bp a s počtem genů v jednotkách tisíců. Vůbec nejhojnější volně žijící organismus na planetě, bakterie Pelagibacter ubique, patří k těm malým – její genom o velikosti pouhého 1,3 milionu bp kóduje 1389 genů. Minimální velikost genomu a nejnižší možný počet genů nutný pro život tedy leží někde pod touto hranicí. Důvodů, proč se je snažíme odhalit, existuje několik. Umožní nám to porozumět základním principům života a tomu, co je nezbytné pro existenci buněk. Rovněž nám to snad dovolí nahlédnout, jak mohly vypadat buňky v raných fázích evoluce života na Zemi, případně rozpoznat život jinde ve vesmíru. Z čistě praktického hlediska budeme moci na základě současných bakterií a archeí vytvořit jednodušší modelové organismy sloužící k testování základních buněčných procesů. V neposlední řadě nám související výzkum umetá cestu k navrhování dalších genomů syntetických buněk, které mohou sloužit třeba pro výrobu biopaliv nebo léčiv.

Nyní vidíte 18 % článku. Co dál:

Jsem předplatitel, mám plný přístup
Jsem návštěvník
Chci si přečíst celé číslo
Předplatným pomůžete zajistit budoucnost Vesmíru. Více o předplatném
OBORY A KLÍČOVÁ SLOVA: Genetika

O autorech

Kateřina Večerková

Jan Pačes

Doporučujeme

Exploze, které tvoří

Exploze, které tvoří uzamčeno

Supernovy vytvářejí v mezihvězdném prostředí bubliny. V hustých stěnách bublin vznikají hvězdy. A to, co začalo výbuchem, končí hvězdou.
Mrtví termiti odpovídají na evoluční otázky

Mrtví termiti odpovídají na evoluční otázky uzamčeno

Aleš Buček, Jakub Prokop  |  6. 1. 2025
Termiti představují odhadem čtvrtinu globální biomasy suchozemských členovců. Naší snahou je pochopit, jak dosáhli ekologického úspěchu, jak se...
Objev země Františka Josefa

Objev země Františka Josefa

Zdeněk Lyčka  |  6. 1. 2025
Soukromá rakousko-uherská polární výprava v letech 1872–1874 nedosáhla zamýšleného cíle, jímž bylo proplout Severní mořskou cestou a případně...