Arktida2024banner2Arktida2024banner2Arktida2024banner2Arktida2024banner2Arktida2024banner2Arktida2024banner2
i

Aktuální číslo:

2025/1

Téma měsíce:

Exploze

Obálka čísla

Poučení z fotosyntézy

 |  3. 5. 2021
 |  Vesmír 100, 284, 2021/5

Fotosyntéza je jeden z nejúžasnějších procesů v přírodě. Vzniká při ní naprostá většina organických látek na Zemi. Přeměna energie fotonů ze Slunce na energii chemickou probíhá v chloroplastech zelených rostlin a v buňkách některých skupin bakterií (Vesmír 98, 518, 2019/9). Teprve r. 2020 se podařilo odvodit a experimentálně ověřit základní pravidla, jimiž se řídí činnost světlosběrných komplexů u obou zmíněných skupin organismů. Mají zřejmě obecnou platnost a vysvětlují, proč jsou suchozemské rostliny zelené, tedy proč absorbují málo zeleného světla, ačkoli je ve slunečním spektru energeticky nejbohatší (obr. 1) [1].

Světlosběrný komplex je složitý soubor pigmentů a proteinů, který zachycuje fotony a odvádí jejich energii do reakčního centra fotosystému. V něm se zářivá energie mění na energii chemickou, jíž je potřeba k fixaci atmosférického uhlíku. Světlosběrné komplexy jsou mimořádně účinné, ale v přírodě většinou panují velmi proměnlivé světelné podmínky. To je jeden ze zdrojů „šumu“ v toku energie. Druhým je strukturní dynamika samotných světlosběrných komplexů. Přesto transformují šum na vstupu zářivé energie do klidného, mohutného a stálého výstupu do reakčního centra fotosystému. Tím jednak chrání fotosyntetický aparát před velmi nebezpečnou fotoinhibicí během vysoké ozářenosti a jednak „posilují“ dodávku energie při ozářenosti nízké.

Vysvětlují to matematické modely světlosběrných komplexů. K snížení šumu je pro ně výhodné mít víc než jeden „vstupní kanál“ (u zelených rostlin jsou to dva různé chlorofyly – chlorofyl a spolu s chlorofylem b). Optimální je podobná vlnová délka absorpčního maxima obou vstupních kanálů, ovšem s různou rychlostí absorpce v tomto maximu. K tomu dochází, jsou-li jejich absorpční maxima umístěna blízko sebe v takové části spektra, kde příkře stoupá nebo klesá intenzita slunečního záření. A to je u chlorofylů v modré a červené oblasti, mezi nimiž leží zelená část spektra. Lze předpokládat, že evoluce u světlosběrných komplexů nepodporovala maximální účinnost, ale stabilitu fungování neboli odstranění šumu. Jemné strukturní detaily různých světlosběrných komplexů jsou důležité, ale pouze v rámci tohoto obecného principu.

Světlosběrné komplexy rostlin by podle některých autorů mohly pomoci lidem nejen jako příklad pro solární technologie. Biologické systémy si „mohou dovolit“ mnoho vnitřních slabostí, neboť interakcí mezi nimi vzniká jejich odolnost. Olivier Hamant v článku Rostliny nám ukazují světlo [2] píše: „Taková suboptimalita může být velmi dobře zdrojem inspirace pro naši budoucí udržitelnost.“ Myslím, že současná koronavirová krize tento názor potvrzuje.

Literatura

[1] Arp T. B. et al.: Science, 2020, DOI: 10.1126/science.aba6630

[2] Hamant O.: Trends in Plant Science, 2021, DOI: 10.1016/j.tplants.2020.10.011

Ke stažení

OBORY A KLÍČOVÁ SLOVA: Fyziologie, Botanika
RUBRIKA: Glosy

O autorovi

Jaromír Kutík

Doc. RNDr. Jaromír Kutík, CSc., (*1948) vystudoval fyziologii rostlin na Přírodovědecké fakultě UK v Praze. Jako emeritus se na této fakultě věnuje zejména rostlinné cytologii.
Kutík Jaromír

Doporučujeme

Exploze, které tvoří

Exploze, které tvoří uzamčeno

Supernovy vytvářejí v mezihvězdném prostředí bubliny. V hustých stěnách bublin vznikají hvězdy. A to, co začalo výbuchem, končí hvězdou.
Mrtví termiti odpovídají na evoluční otázky

Mrtví termiti odpovídají na evoluční otázky uzamčeno

Aleš Buček, Jakub Prokop  |  6. 1. 2025
Termiti představují odhadem čtvrtinu globální biomasy suchozemských členovců. Naší snahou je pochopit, jak dosáhli ekologického úspěchu, jak se...
Objev země Františka Josefa

Objev země Františka Josefa

Zdeněk Lyčka  |  6. 1. 2025
Soukromá rakousko-uherská polární výprava v letech 1872–1874 nedosáhla zamýšleného cíle, jímž bylo proplout Severní mořskou cestou a případně...