Siemens2024Siemens2024Siemens2024Siemens2024Siemens2024Siemens2024

Aktuální číslo:

2024/9

Téma měsíce:

Chiralita

Obálka čísla

Chromozóm

Nad míľnikmi molekulárnej biológie
 |  5. 6. 1994
 |  Vesmír 73, 305, 1994/6

Dnes, na konci 20. storočia, každý stredoškolsky vzdelaný človek vie nelen to, že hmotnými nositeľmi dedičnosti sú chromozómy, ale nie sú mu cudzie ani poznatky o ich štruktúre a mechanizmoch delenia. Pritom, z historického hľadiska ešte nie tak dávno, na konci minulého storočia, viedli medzi sebou vedci vášnivé diskusie o existencii bunkových nositeľov dedičnosti. Dnes niet pochýb o ich existencii a chromozómy sa stali objektom mnohorakého záujmu vedcov. Za krátke obdobie medzi koncom minulého storočia a dneškom postúpil pokrok v tejto oblasti vedy dopredu obrovským skokom, od sporov o ich existencii k rekombinantným technikám, vďaka ktorým sa priemyselne „vyrábajú“ mnohé biologicky aktívne látky, k pokusom na transgénnych zvieratách, alebo k “produkcii“ transgénnych rastlín s požadovanými vlastnosťami.

V tomto roku uplynulo 106 rokov od prvého písomného návrhu pomenovania premenlivých častí jadra vajíčka, vstupujúcich v priebehu mitózy na „chromozómy“ (J. Folta a L. Nový: Dějiny přírodních věd v datech, Mladá fronta 1979).

Wilhelma Waldayera preslávila práca „Über Karyokinese und ihre Beziehungen zu den Befruchtungsvorgängen“, ktorú publikoval r. 1888, a v ktorej prvýkrát spomína termín „chromozóm“. Anglický preklad tejto práce „On karyokinesis and its relation to the process of fertilization“ potom vyšiel o rok neskôr. V tejto rozsiahlej súbornej práci Waldayer sumarizuje experimentálne a teoretické vedomosti generácie svojich súčasníkov, medzi ktorými nechýbali E.G. Balbiani (1823 – 1899), van Beneden (1846 – 1910), T. Boveri (1862 – 1915), O. Bütschli (1848 – 1920), W. Flemming (1843 – 1906), O. Hertwig (1846 – 1922) a A. Weismann (1834 – 1914). Waldayerov termín bol úspešnejší v porovnaní s ďalšími navrhovanými konkurenčnými termínami: „chromatické elementy“, „jadrové slučky“, „karyozómy“ alebo „jadrové segmenty“. V súčasnosti je v prírodných vedách termín chromozóm akceptovaný univerzálne.

Wilhelm Waldeyer (plným menom Heinrich Wilhelm Gottfried von Waldayer-Hartz; 1836 – 1921) bol vo svojej dobe špičkovým odborníkom v anatómii. Od roku 1883 až do svojho odchodu do dôchodku v roku 1917 stál na čele Ústavu anatómie na Univerzite v Berlíne. Ešte aj v súčasnosti sú mnohé práce z jeho početných histologických, anatomických a patologicko-anatomických publikácií citované a v anatomických učebniciach je jeho meno zachované v takých termínoch ako: Waldayerov zárodočný epitel ovárií, Waldayerova marginálna zóna predných rohov miechy, Waldayerov lymfatický prstenec hltanu apod. Z jeho histologických štúdií pochádzal nadšený záujem o procesy bunkového a jadrového delenia, i keď sám, čo je pozoruhodné, nikdy nepublikoval žiadne vlastné experimentálne výsledky, zaoberajúce sa chromozómami.

Je treba pripomenúť, že 19. storočie v oblasti vedeckého výskumu ponúklo oveľa viac ako všeobecne akceptované pomenovanie „farbiteľných teliesok“ (chromosomata), ktoré sú zreteľne viditeľné pri mitóze a meióze, ale ktorých štruktúra a funkčný význam boli objasnené až v 20. storočí. Umožnili to poznatky získané štúdiom živých organizmov na biologickej úrovni, ktoré boli formulované do troch základných zovšeobecnení: teórie evolúcie prirodzeným výberom, tvorcom ktorej je Ch. R. Darwin (1809 - 1882), ktorá tvrdí, že všetky dnešné rastliny a živočíchy vznikli neustálou evolučnou premenou z jednoduchých organizmov. Dnešná bunková biológia uznáva vo všeobecnosti názor, že bunka, jej membrány, organely a informačné molekuly sa vyvinuli v priebehu niekoľkých biliónov rokov evolúcie. Evolučná teória je dnes prijímaná všeobecne ako skutočnosť, s výnimkou menšiny tradicionalistov, ktorých námietky sa nezakladajú na rozumových dôvodoch, ale na doktrinárskom lipnutí na náboženských princípoch.

Ten istý záver nezávisle prináša i druhý základný princíp biológie 19. storočia – bunková teória. Táto teória presvedčivo uvedená v roku 1838 – 39 nemeckými biológmi T. Schwannom (1810 – 1882) a M. Schleidennom (1804 – 1881) hovorí, že všetky rastliny a živočíchy pozostávajú z mnohých základných jednotiek – buniek. Vyvrcholením formovania tejto teórie bol Virchowom (1821 – 1902) formulovaný postulát: každá bunka vzniká z už existujúcej bunky delením (Omnis cellula e cellula; 1855). Väčšina buniek je schopná rásť a deliť sa na dve približne rovnaké dcérske bunky. Súčasne sa s bunkou delí jadro (Omnis nucleus e nucleo), takže každá dcérska bunka má svoje vlastné jadro. Pred delením bunky sa každý chromozóm rozdelí na dva chromozómy zhodné s rodičovskými a každý individuálny chromozóm vzniká po replikácii a rozštiepení z už existujúceho chromozómu (Omnis chromosoma e chromosoma). Týmto pochodom, prvýkrat presne pozorovaným W. Flemmingom v roku 1879, sa počet chromozómov jadra zdvojnásobí. Až poznatky o procesoch priameho a nepriameho delenia buniek (amitóza a mitóza) umožnili doformulovať bunkovú teóriu a dali základ tretiemu zovšoobecneniu: chromozómovej teórii dedičnosti.

Na základe zistenia, že spermie sa skladajú z jadrového materiálu už v roku 1868 vyslovil E. Haeckel (1834 – 1919) predpoklad, že za dedičnosť je zodpovedné bunkové jadro. Uplynulo však ďalších temer 20 rokov, kým boli ako aktívne faktory dedičnosti identifikované chromozómy, pretože bolo nutné poznať detaily meiózy a mitózy.

Chromozómovú teóriu dedičnosti publikoval v roku 1892 A. Weismann. Jeho kniha „Das Keimplasma. Eine Theorie der Vererbung“ (Zárodečná plasma. Teória dedičnosti) je príkladom veľkej teoretickej práce, mylnej síce v detailoch, ale nesmierne podnetnej a cennej v jej základných princípoch. Weismann zosumarizoval všetky argumenty v prospech lokalizácie dedičnej substatncie do „chromatínových granúl“ chromozómov a tvrdil, že táto substancia, ktorú nazval idioplazma, je výsledkom nesmierne dlhého selektívneho evolučného procesu a je extrémne komplexná a stabilná. Weismann uvažoval o „biofóroch“ ako o najmenších časticiach dedičnosti idioplazmy, ktoré podľa neho mohli migrovať do vnútrobunkových priestorov cez póry membrány jadra a takto ovplyvňovať stav bunkovej diferenciácie vo vzťahu k bunkovej štruktúre a funkcii. Podobne ako všetci jeho súčasníci ani Weismann neuvažoval o informačných molekulách a chemická podstata dedičnosti bola predmetom špekulácii.

Dôkazy potrebné pre vyslovenie chromozómovej teórie dedičnosti boli k dispozícii na začiatku storočia po znovuobjavení základných pravidiel dedičnosti. Tieto zákony, pomenované po pôvodnom objaviteľovi Mendelove (G. J. Mendel, 1822 – 1884), boli v skutočnosti vyslovené už v roku 1865, ale vtedajšie vedecké názory neboli ešte dostatočne zrelé pre ich prijatie. Znovuzverejnenie Mendelových zákonov v roku 1900 využili v roku 1903 T. Boveri a W. S. Sutton (1877 – 1916), ktorí navrhli novú chromozómovú teóriu dedičnosti. W. S. Sutton vo svojej klasickej práci The Chromosome in Heredity (Chromozómy v dedičnosti) zdôraznil fakt, že diploidné sady chromozómov pozostávajú z dvoch morfologicky zhodných haploidných sád a v procese meiózy každá gaméta dostáva len jeden chromozóm z homologického páru. Dá sa povedať, že spolu s T. H. Morganom (1866 – 1945), ktorý dospel k významným záverom o úlohe génu ako nositeľa dedičných vlastností, a jeho školou, sa stali vedomostnými predchodcami dnešných cytogenetikov. T. H. Morgan svoje bádania zhrnul v práci The Mechanism of Mendelian Heredity (Mechanizmus mendelovskej dedičnosti), kde ukázal všeobecnú platnosť chromozómového základu dedičnosti, ktorá sa spolu s evolučnou a bunkovou teóriou radí k veľkým úspechom biológov v snahe porozumieť podstate živého sveta.

Pokrok biológie 19. storočia postupujúci od bunkovej teórie ku formovaniu koncepcie presnej úlohy chromozómov v dedičnosti má veľký význam nielen pre prírodné vedy, ale aj pre ľudské poznanie vo všeobecnosti. Tento historický proces metodologického pokroku, nových teoretických koncepcií, experimentálnych sledovaní a vedeckej „revolúcie“ potvrdil odklon od vitalistických teórií života, ktoré dominovali tisíce rokov. To je iste nie menej dôležité ako nedávny pokrok v génovych technológiach odvodený od objasnenia podstaty fyzikálnej štruktúry DNA.

1838-1839 - M. Schleiden a T. Schwann: buněčná teorie

1859 - Ch. Darwin: evoluční teorie

1865 - G. J. Mendel: teorie dědičnosti

1868 - E. Haeckel: úloha buněčného jádra v dědičnosti

1869 - F. Miescher: objev DNA funkce neznáma

1879 - W. Flemming: popis dělení chromozomů

1888 - W. Waldayer: termín chromozom

1892 - A. Weismann: chromozomová teorie dědičnosti

1903 - T. Bovery a W. S. Sutton: znovuobjevení Mendelových zákonů, vztah chromozomů a mendelovské dědičnosti

1900-1915 - T. H. Morgan: mechanizmy mendelovské dědičnosti, vazebné skupiny genů, determinace sexu

1909 - W. Johannsen: termín gen

1931 - B. McClintocková: vztah mezi přestavbami chromozomů a distribucí určitých znaků

1940 - G. W. Beadle a E. Tatum: jeden gen, jeden enzym

1944 - O. T. Avery, C. M. MacLeod a M. McCarty: nositelem dědičnosti je DNA

1949 - E. Chargaff: množství adeninu v DNA odpovídá množství thyminu, množství cytosinu odpovídá množství guaninu

1953 - J. Watson a F. Crick: model dvoušroubovice DNA, mechanizmus předávání genetické informace

1961 - N. W. Nirenberg: částečné rozluštění genetického kódu

1961 - F. Jacob a J. Monod: pravidla genové regulace E. Coli

1977 - A. M. Maxam, W. Gilbert a F. Sanger: metody pro určení pořadí bází v DNA

1977 - K. Itakura a spol.: produkce lidského genu pro hormon somatostatin v E. coli

1980 - J. D. Cohen, H. W. Boyer: patent na živé organizmy vzniklé genovým inženýrstvím

1981 - Prenatální diagnostika vrozených vad u člověka pomocí analýzy DNA

1983 - K.B. Mulis: polymerázová řetězová reakce

1990 - Úspěšná genová terapie imunitní nedostatečnosti


Chromozóm


Štruktúra, ktorá umožňuje uskladnenie, kopírovanie (replikáciu i transkripciu) a rovnomerné rozdelenie genetickej informácie pri jadernom delení. Asi 2 m DNA, ktoré obsahuje každá ľudská bunka, sú rozložené do 46 chromozómov. Molekula DNA je zvinutá do štruktúr niekoľkých rádov (obrázek); najviac je chromozóm kondenzovaný pri delení jadra (mitóze), kedy sa chromozómy rozostupujú do dcérskych jadier. V jadre bunky su mnohokrát dlhšie a stávajú sa súčasťou zložitej štruktúry chromatínu, na ktorej sa okrem chromozómov podieľa i obal jadra (lamina) a zložitá priestorová sieť nukleoskeletu. Samotná DNA, akokoľvek je dlhá, tvorí menej než pol percenta objemu jadra... Štruktúra chromatínu určuje, ku ktorým génom má bunka prístup, ako často a akým spôsobom budú kopírované (zostrih RNA) a mnoho ďalších funkcií. Kryštalizuje predstava, že každý typ bunky má typickú štruktúru chromatínu. Schéma usporiadania chromatínu je na obrázku. Farebné tabule ľudských chromozómov a ďalšie informácie viď Vesmír 6/1991.


OBORY A KLÍČOVÁ SLOVA: Historie vědy

O autorovi

Peter Fedoročko

RNDr. Peter Fedoročko (*1959) študoval na Prírodovedeckej fakulte Univerzity P. J. Šafárika. Na Prírodevedeckej fakulte UPJŠ v Košiciach sa zaoberá možnosťou ochrany genetického materiálu pred účinkami žiarenia.

Doporučujeme

Homochirální život a racemická smrt

Homochirální život a racemická smrt uzamčeno

Tomáš Ovad, Petr Slavíček  |  2. 9. 2024
Saský král Lothar III. zahájil krátce po své korunovaci římským císařem tažení na Sicílii, ovládanou normanským panovníkem Rogerem II. Ačkoli...
Žabí poklad amazonských domorodců

Žabí poklad amazonských domorodců

Pro někoho jde o magickou medicínu prodávanou na internetu, pro domorodé obyvatele Amazonie o cennou surovinu využívanou v tamní medicíně, ale v...
Podvodní ohňostroj

Podvodní ohňostroj uzamčeno

Bioluminiscence, tedy proces produkce a emise studeného světla živými organismy, se může uplatnit v základním výzkumu, v neinvazivním...