Vesmírná školaVesmírná školaVesmírná školaVesmírná školaVesmírná školaVesmírná škola
i

Aktuální číslo:

2025/1

Téma měsíce:

Exploze

Obálka čísla

Výzvy hydroakustiky

 |  5. 4. 2018
 |  Vesmír 97, 228, 2018/4

Kdo chce pochopit, co se děje pod hladinou vodních nádrží, jezer a moří, musí mít k dispozici metody pro sběr reprezentativních informací o skutečně velkých objemech vody. Jedním z nejslibnějších přístupů je použití ultrazvukových signálů vysílaných echoloty a sonary.1)

V typické aplikaci se jedná o vysílání dobře definovaného množství ultrazvukové energie do vodního prostředí a analýzu ozvů (ech) odražených od různých struktur ve vodním prostředí, případně i ze dna. Výzkumy v mořské biologii a oceánografii jsou dnes bez echolotů skoro nepředstavitelné. Většina informací o prostorovém výskytu ryb i mnoha dalších organismů v mořích a oceánech pochází v dnešní době právě z echolotů.

Echoloty našly široké uplatnění i ve sladkovodním výzkumu. Na hydrobiologických pracovištích Akademie věd orientovaných na přehradní nádrže a jezera se používají už od konce šedesátých let 20. století. Po dlouhou dobu však jejich použití výrazně limitoval fakt, že nebyly schopny přesně určovat velikost pozorovaných objektů. Menší objekty na okraji zvukového kužele se jevily stejně velké jako velké objekty na jeho okraji. Badatelé byli odkázáni na pravděpodobnostní modely určování velikostí, a to výrazně snižovalo přesnost získávaných dat. Podobně fungují běžné komerční echoloty pro jachtaře, sportovní rybáře apod.

Výrazným mezníkem ve vývoji kvalitních vědeckých echolotů byl vývoj dvoukuželových (dual-beam) systémů a systémů s děleným kuželem (split-beam), které umožnily přímé zjišťování velikosti každého pozorovaného objektu, jehož echo se nepřekrývalo s jiným. Tento vývoj se datuje do konce osmdesátých let 20. století a předznamenal masový rozvoj echolokačních studií. Vědecká komunita dostala do rukou úžasné nástroje, kterými lze rychle a efektivně prohlédnout miliony kubických metrů do té doby téměř neznámého prostředí (obr. 1). Hloubky našich nádrží a jezer dosahují maximálně 100 metrů, takže vzdálenost k pozorovaným objektům nebývá na rozdíl od hlubokých jezer a moří limitující. Zdálo by se, že tajemství vodních tvorů budou velmi rychle odkrývána.

Zdánlivě prázdné nádrže

S postupnou eutrofizací našich vod (snížení průhlednosti v důsledku rozvoje řas) a s vytvářením poměrně příkré teplotní stratifikace však došlo k tomu, že se naše nádrže při klasickém průzkumu vertikálním echolotem jeví jako prázdné. Na rozdíl od moří ryby nejsou od pozorovatele příliš daleko, ale příliš blízko. Obr. 2 ukazuje několik možných typů vertikální distribuce ryb v nádržích a jezerech. Ryby si své prostředí aktivně vybírají, takže rovnoměrný výskyt v prostředí (obr. 2A) může nastat snad pouze teoreticky v intenzivně míchaných umělých systémech.

Nyní vidíte 18 % článku. Co dál:

Jsem předplatitel, mám plný přístup
Jsem návštěvník
Chci si přečíst celé číslo
Předplatným pomůžete zajistit budoucnost Vesmíru. Více o předplatném
OBORY A KLÍČOVÁ SLOVA: Ekologie, Hydrologie

O autorech

Jan Kubečka

Jaroslava Frouzová

Michal Tušer

Doporučujeme

Exploze, které tvoří

Exploze, které tvoří uzamčeno

Supernovy vytvářejí v mezihvězdném prostředí bubliny. V hustých stěnách bublin vznikají hvězdy. A to, co začalo výbuchem, končí hvězdou.
Mrtví termiti odpovídají na evoluční otázky

Mrtví termiti odpovídají na evoluční otázky uzamčeno

Aleš Buček, Jakub Prokop  |  6. 1. 2025
Termiti představují odhadem čtvrtinu globální biomasy suchozemských členovců. Naší snahou je pochopit, jak dosáhli ekologického úspěchu, jak se...
Objev země Františka Josefa

Objev země Františka Josefa

Zdeněk Lyčka  |  6. 1. 2025
Soukromá rakousko-uherská polární výprava v letech 1872–1874 nedosáhla zamýšleného cíle, jímž bylo proplout Severní mořskou cestou a případně...