Světlosběrné jezero v thylakoidní membráně chloroplastu
| 1. 10. 2015Globální význam fotosyntézy asi není třeba dokazovat. I malý pokrok v jejím poznávání má velký význam pro celou biologii a může být důležitý i pro lidstvo.
O lokalizaci procesu fotosyntézy v zelených organelách rostlin (chloroplastech, viz obr. 1), jeho mechanismu a některých nově objasněných detailech nedávno psala Naďa Wilhelmová (Vesmír 93, 266, 2014/5). Přeměna energie slunečního záření na energii využitelnou k fixaci atmosférického oxidu uhličitého a k dalším biochemickým dějům probíhá na thylakoidní membráně, důmyslně naskládané uvnitř chloroplastu (obr. 2). Fotosyntetický aparát se musí přizpůsobovat světelným podmínkám, aby efektivně využíval zářivou energii a nedocházelo k jeho poškození. Přenosu zářivé energie mezi dvěma klíčovými chlorofylbílkovinnými enzymatickými komplexy thylakoidní membrány, fotosystémy (PS) 1 a 2, se věnuje publikace profesorky Evy-Mari Aro a jejích spolupracovníků z univerzity ve finském Turku, která vyšla v časopisu Biochimica et Biophysica Acta.
Fotosystémy se liší složením a absorpčním spektrem – PS2 má absorpční maximum při červeném, PS1 při dlouhovlnném červeném světle. Liší se i převládající lokalizací: PS1 ve volných thylakoidních membránách tvořících vakovité útvary, PS2 v přitisknutých diskovitých částech thylakoidních membrán, které mikroskopici nazvali grana (tedy zrna) – podle patrného nahromadění zeleného chlorofylu. Do obou PS dodávají nasbíranou zářivou energii světlosběrné komplexy LHC (light harvesting complexes), rovněž tvořené především molekulami chlorofylu a bílkovin, jako PS. Interakce uvedených čtyř chlorofylbílkovinných komplexů se studují už několik desítek let, především pomocí sledování jejich fluorescence za nízkých teplot. Do učebnic vstoupil model „přechodu ze stavu 1 do stavu 2“ (State 1 – State 2 transition), podle kterého jsou PS2 a PS1