Aktuální číslo:

2018/2

Téma měsíce:

Bionika

Výroba efedrinu jako příklad biotechnologie

 |  5. 4. 1995
 |  Vesmír 74, 194, 1995/4

Biotechnologie sahá vlastně až do doby, kdy se člověk 15 000 až 10 000 let před Kristem začal koncem poslední doby ledové usazovat jako pastevec a pěstovat dobytek. Neboť co to je, když se zvíře krmí a tento substrát se přeměňuje v maso, tuk a jiné užitečné věci? A co naši prapředkové, kteří vyráběli kvašené nápoje? Již za Abraháma (1900 - 1700 let před Kristem) slavil Melchizedech oběť chleba a vína. Kristovi na kříži nabídli římští vojáci ocet na yzopu a houbě, takže Židé museli mít ocetnici, v níž octové bakterie oxidovaly etanol na kyselinu octovou. Donedávna se tradovala definice biotechnologie jako procesu, v němž se vyrábějí látky pomocí živých organizmů. Dnes je však třeba tuto definici opravit - je to každý proces, v němž se alespoň jeden krok uskutečňuje na principu enzymové reakce (např. výroba sójové omáčky je založena na hydrolýze bílkovin směsí proteáz).

Efedrin (1 R,2 S-(-)-1-fenyl-2(metylamino)-1-propanol) a jeho N-deriváty patří svou strukturou a účinky mezi sympatomimetické aminy, léčiva analogická přirozeným přenašečům adrenalinu a noradrenalinu. Tato skupina farmak dráždí sympaticus, tj. zvyšuje tepovou frekvenci a krevní tlak a vede k rozšíření dýchacích cest. Základní strukturou většiny sympatomimetik je fenyletyl-, resp. fenylizopropylaminové seskupení, tj. spojení bazické aminové funkce a aromatického jádra řetězcem o dvou, resp. třech uhlíkatých atomech. Modifikací funkčních skupin tohoto skeletu lze do jisté míry měnit sympatomimetický účinek zmíněných sloučenin.

Efedrin byl původně (r. 1885) izolován z čínské drogy Ma-Huang, později z rostliny Ephedra vulgaris, která roste v jižní Evropě, Asii a Africe a obsahuje 2 - 3 % efedrinu. Izolace efedrinu se prováděla snadno tak, že se suchá rostlina extrahovala organickými rozpouštědly a báze efedrinu se dělily krystalizací. Vzhledem k požadavkům na množství efedrinu potřebné pro farmaceutický průmysl a nedostatečnost výroby této látky z přírodních zdrojů se systematicky zkoumaly syntetické metody. Byla vypracována řada syntéz, jejichž hlavním nedostatkem byl nestereospecifický průběh, tj. vznik racemických směsí (směsí, v nichž se optické aktivity složek vzájemně ruší), a vznik řady vedlejších produktů způsobujících obtížné dělení jednotlivých látek.

Z hlediska dnešních možností a potřeb farmaceutického průmyslu je nejvýhodnější metodou výroby efedrinu kombinovaný postup využívající biosynteticky připraveného fenylacetylkarbinolu (L-(-)-1-fenyl-1-hydroxy-2-propanon, FAK), který se v syntetickém stupni podrobí katalytické reduktivní aminaci. Biosyntéza FAK představuje biotechnologický krok procesu. Využívá Neubergova principu, objeveného r. 1924, podle něhož aldehydy mechanizmem aldolové kondenzace s aktivním acetaldehydem na kvasničné pyruvátdekarboxyláze kondenzují na ketoly, tj. sloučeniny s ketonovou a alkoholovou skupinou vázané na sousední uhlíkové atomy. FAK jako jeden z ketolů vzniká biotransformací benzaldehydu (BA) pomocí kvasinek vytvářejících aktivní acetaldehyd z cukru, tj. sacharózy, která se tak stává vedle substrátu, jímž je benzaldehydu, kosubstrátem.

Biotransformace benzaldehydu a sacharózy na FAK zahrnuje kultivaci (propagaci) kvasinek Saccharomyces sp. a vlastní biotransfomaci, přičemž oba stupně představují fermentační proces probíhající ve fermentačním tanku. Vlastní biotransfomace se zahajuje na konci exponenciální fáze růstu kvasinek, kdy klesá koncentrace redukujících látek na nulu a kdy dochází k potlačení glukózou, a sice mohutnou dávkou sacharózy (2,5 %) a dávkou benzaldehydu (0,35 %). Tím se vyvolá glukózový neboli Crabtree efekt, tj. potlačení aerobního metabolizmu vlivem glukózy, která vzniká ze sacharózy invertázovou reakcí a metabolizuje se v této fázi převážně anaerobně, tj. přes pyruvát (kyselinu pyrohroznovou) a acetaldehyd na etanol. Část acetaldehydu v aktivní formě (acetaldehyd vázaný na pyruvátdekarboxylázu přes její koenzym, tiaminpyrofosfát) však kondenzuje s benzaldehydem na FAK a další produkty, jejichž koncentrace ve fermentační tekutině však nepřesahuje hodnotu 0,08 %. Biotransformace potom pokračuje řízeným dávkováním benzaldehydu a sacharózy po dobu asi 13 hodin, za kterou se spotřebuje okolo 4 % cukru a 1,25 až 1,4 % benzaldehydu. Na konci biotransformace se ve větší míře objevuje benzylalkohol (až 0,25 %),

vznikající redukcí benzaldehydu pomocí kvasničné alkoholdehydrogenázy, FAK (až 1,24 %) a etanol (až 2 %) jako konečný produkt alkoholového anaerobního kvašení.

Celá situace je znázorněna na obrázku (obrázek). Sacharóza se za katalýzy invertázou přeměňuje na glukózu a fruktózu, které jsou transportovány do buněk a přeměňovány pomocí enzymů glykolytického cyklu (např. fosfofruktokinázou, glyceraldehydfosfátdehydrogenázou, enolázou aj.) na pyruvát. Ten pak je zpracováván v anaerobním metabolizmu (pyruvátdekarboxyláza, alkoholdehydrogenáza) na hlavní produkt, etanol, za tvorby adenosintrifosfátu (ATP), který představuje pro buňku zdroj energie, a nikotinamidadenindinukleotidu v oxidované formě (NAD+), který jako koenzym dehydrogenáz slouží k oxidacím substrátů a je v podstatě transporterem vodíku (NAD+ + 2 H+ NADH + H+). Pyruvát však vstupuje také do aerobního metabolizmu (citrátový neboli Krebsův cyklus napojený na dýchací řetězec v mitochondriích), přičemž cílem tohoto procesu je v tomto případě především tvorba ATP (energie) a NAD+ pomocí vzdušného kyslíku. Jak je totiž znázorněno na obrázku, BA a FAK (do jisté míry také benzylalkohol) jako toxická organická rozpouštědla denaturují enzymy a jiné bílkoviny a poškozují buněčnou stěnu, cytoplazmaticku (buněčnou) membránu a mitochondriální membrány. V důsledku toho ve vysoce exponované kvasničné buňce probíhají procesy detoxikace BA na FAK, jehož koncentrace však neustále stoupá. Buňka se proto neobejde s nedostatečným množstvím ATP a NAD+ dodávaným z anaerobního metobolizmu. Tvorba těchto důležitých látek v aerobním metabolizmu je mnohem mohutnější. A tak ačkoli biosyntéza FAK probíhá v anaerobní větvi, závisí na aerobním metabolizmu glukózy.

Na konci biotransformace se kvasničná suspenze zahustí na velkokapacitních průtokových odstředivkách a FAK se pak extrahuje na protiproudných kolonách do butylacetátu (butylester kyseliny octové). Potom se butylacetátový extrakt zahustí na koncentrát s obsahem asi 50 % FAK. Ten se podrobí katalytické reduktivní aminaci v reaktorech pomocí metylaminu a plynného vodíku za zvýšeného tlaku, zvýšené teploty a přítomnosti katalyzátoru, jímž bývá platinová čerň nanesená na nosiči. Přes ketimin jako meziprodukt tak vzniká efedrin, převážně jako L-(-)-efedrin, i když je doprovázen malými množstvími vedlejších produktů a svých opticky aktivních izomerů, jimiž jsou D-(+)-efedrin a L-(-)- a D-(+)-pseudoefedrin. Výhodou tohoto procesu je vysoká stereoselektivita, což znamená vysoký výtěžek žádané L-(-)-formy efedrinu. Efedrin se musí z reakční směsi izolovat, načež se čistí krystalizací a jako hydrochlorid se distribuuje do farmaceutických podniků k výrobě léků.

Efedrin se nejčastěji používá k léčbě alergických stavů (asthma bronchiale) v kombinaci s antihistaminiky a k léčbě oběhových poruch, jako jsou vazomotorický kolaps, sinusová bradykardie (tj. zpomalená srdeční činnost) aj. Efedrin byl obsažen v preparátu k léčbě průdušek Yastyl, který byl údajně návykový. V seznamu návykových látek pro rok 1994 již efedrin obsažen není, nicméně se ho zneužívá k přípravě asi 10krát účinnějšího Pervitinu, který patří mezi psychomimetika (viz článek Milana Dundra 74, 189, 1995/4). Mezi narkomany je znám pod názvem perník a na zahraničním trhu se prodává pod názvem Czecho či Tchéquo.

OBORY A KLÍČOVÁ SLOVA: Biochemie

O autorovi

Roman Zeman

RNDr. Roman Zeman, CSc., (*1951) vystudoval biochemii na Přírodovědecké fakultě UK v Praze. Ve Výzkumném ústavu antibiotik v Roztokách u Prahy se zabývá zejména biochemií.

Doporučujeme

Návrat Široka

Návrat Široka

Pavel Pipek  |  9. 2. 2018
Zpráva, která na mě právě vyskočila na Twitteru, by asi většinu Evropanů nechala chladnou, ale mé srdce buší tak, že mám chuť okamžitě vyskočit z...
Rytíř našich vod

Rytíř našich vod

Marek Janáč  |  5. 2. 2018
Na stěně ve své kanceláři má vystavené krunýře velkých raků. Za jeho pracovní židlí v akváriu rak. V knihovně knihy o racích a v laboratoři ve...
O kvantových počítačích a šifře RSA

O kvantových počítačích a šifře RSA uzamčeno

Jiří Poš  |  5. 2. 2018
značným příslibem pro výpočetní systémy budoucnosti je rozvíjející se obor kvantových počítačů. Představují naději, že eliminují některá vážná...

Předplatným pomůžete zajistit budoucnost Vesmíru

Tištěná i elektronická
verze časopisu
Digitální archiv
od roku 1994
Speciální nabídka
pro školy a studenty

 

Objednat předplatné