Aktuální číslo:

2024/11

Téma měsíce:

Strach

Obálka čísla

Hraje Bůh dřevěnými kostkami?1)

Prastarý materiál a modely jeho struktury
 |  5. 6. 2003
 |  Vesmír 82, 317, 2003/6

Dřevo doprovází člověka již od počátku. V podobě primitivních nástrojů, obydlí či paliva se stalo nedílnou součástí jeho života. Postupně člověk vytvořil pro dřevo řadu kvalitativních i kvantitativních hledisek – od technologických, technických či ekologických po ekonomická, estetická až mystická. Bez jakéhokoliv zlehčení přečkalo dřevo – a s ním i někteří jeho rostlinní nositelé – dlouhou dobu nezájmu, milion let prostého využívání a posledních pár století vědeckého zájmu. Dalo by se očekávat, že množství uplynulého času dodá váhu hodnotě, která je v něm skryta. Paradoxně ale právě mnohaletý každodenní kontakt a dosažitelnost v širším slova smyslu z něj činí v lidských očích fádní spotřební materiál. Teprve nedostatek dřeva, odvozených produktů a finančních prostředků pro jejich zpracování vytváří potřebu, aby byly některé prvky výroby materiálů na bázi dřeva efektivnější.

Materiál rozmanitých vlastností

Dřevo lze definovat řadou způsobů, schopných postihnout některou z podstat jeho existence. 2) Obecnost definic pak dává tušit rozmanitost možného vnitřního uspořádání i vnějších projevů. Rozmanitost však nespočívá pouze v množství druhů rostlinných zástupců, ale je součástí každého jedince. Jedním z nejpropracovanějších rostlinných zástupců (z morfologického, ekologického, fyzikálního i mechanického hlediska) je ve střední Evropě smrk obecný (Picea abies).

Současné technologie zpracování se v návrzích na zefektivnění výroby stále častěji dovolávají nových matematických modelů schopných popsat rozmanitost možného projevu v rámci daného jedince. Rozmanitost lze dokumentovat z různých hledisek, ale zaměřme se na mechanické a fyzikální vlastnosti, které jsou v technologickém procesu nejdůležitější. Z tohoto pohledu lze dřevo charakterizovat jako anizotropní materiál. Anizotropie 3) se v jednotlivých, rozdílně organizovaných úsecích liší, navíc se úseky mohou překrývat.

Pro dřevařský průmysl je nejdůležitější kmen, který lze postupně rozlišit až na buněčnou (mikroskopickou), popř. ještě detailnější (submikroskopickou) úroveň. Vlastnosti se však mění i uvnitř měřítek – v rámci struktur. Lze vypozorovat závislost jednotlivých pletiv, dřevních elementů apod. na poloměru vzdálenosti od středu kmene, na výšce či poloze uvnitř letokruhu. Organizované celky je třeba rozlišit, a potom je vymezit jako projev obecného principu hierarchické výstavby.

Makroskopické a mikroskopické měřítko

Proměnlivost vlastností lze dokumentovat na mnoha případech, např. na makroskopickém i mikroskopickém měřítku se mechanické vlastnosti ve třech hlavních směrech liší v jednom řádu, avšak změna v rámci jednoho měřítka se ve vybraném hlavním směru ortotropie 4) rovněž může pohybovat v jednom, popř. i ve dvou řádech. Průběh závislosti napětí na deformaci při statickém namáhání může mít charakter podobný jako kovové materiály, stejně dobře jako materiály pěnové.

Příčinu tohoto faktu se od r. 1670 snažilo popsat více než 17 (známějších) modelů, všechny však přistupovaly k materiálu homogenizovanému na makroskopickém měřítku. Na druhou stranu při zpětné rekonstrukci chování vycházely pouze ze středních hodnot rozložení mechanických vlastností a ochuzovaly výsledný projev právě o tu širokou škálu rozmanitosti. Z pochopitelných důvodů se proto od sedmdesátých let 20. století přesouvá zájem na nižší měřítka – mikroskopické a submikroskopické. Zkoumalo se chování buněčných nosných elementů (u smrku jsou to tracheidy neboli cévice) a jejich buněčných vrstev. Výsledkem byl analytický vrstvený model i homogenizovaný skeletární model cévice. V devadesátých letech nárůst výpočetního výkonu umožnil zachovat proměnlivost vybraných organizovaných struktur v podobě geometrické konstrukce letokruhů, a tím rozlišit různé poměry jarního a letního dřeva v rámci letokruhu, prozatím řešené převážně jako rovinné problémy. Zároveň se začaly rozlišovat detaily v modelech odvozených z anatomické stavby (rozpoznány byly pětihranné či šestihranné až nepravidelné průřezy tracheid).

Samostatný směr tvoří verifikační modely, které vycházejí z fotografické předlohy vzorku a provádějí extrapolaci do makroskopického měřítka (obr. 321 vlevo dole). Takové modely se pohybují v rozměru 0,01–0,1 mm a umožňují zahrnout i drobné detaily, např. ztenčeniny buněčné stěny a vzájemný kontakt tímto způsobem perforovaných buněčných stěn. Omezené schopnosti výpočetní techniky limitují množství detailů zahrnutých v modelu na jedné straně a velikost simulovaného regionu na straně druhé.

Pravděpodobnostní modely

Kombinací výše uvedených jsou pravděpodobnostní modely, které popisují anatomickou strukturu dřeva na základě statistického rozložení morfologických parametrů (délky, šířky, tloušťky) stavebních elementů včetně vlivu nadřazených struktur s vlastní organizací. V porovnání s rovinnými modely je pravděpodobnostní model složitější a je schopen popsat menší oblasti (viz obrázek pod článkem), avšak několikanásobně rozsáhlejší ve srovnání s verifikačními modely. Oproti předešlým modelům není výstupem jedno řešení odpovídající dané oblasti, ale sada řešení, která reprezentují výsledky zvoleného fyzikálního problému na statisticky ekvivalentní pozici. Pojem statisticky ekvivalentní pozice zde v přeneseném významu označuje zvolený počet reprezentantů simulované oblasti s pravděpodobným vnitřním uspořádáním podle zvolené funkce hustoty pravděpodobnosti příslušející morfologickým parametrům tracheid. Velikost oblastí může být v extrémních případech až několik cm2 v průřezu, a tedy několik tisíc buněk, čímž přechází na makroskopické měřítko a postihuje tak variabilitu a převažující chování podstatné části tohoto materiálu.

Současné pravděpodobnostní modely jsou prozatím realizovány pouze na jednodušších strukturách dřeva. Geometrie vyjadřuje kompromis mezi splněním základních rozpoznávacích znaků, pravděpodobným tvarem elementů a nedostatkem informací o reálné struktuře. Modely formované tímto způsobem vzhledem k popisu prosté geometrie mohou být aproximovány některou z numerických metod vhodných pro zvolený fyzikální problém – např. od mechanické úlohy po vázané fyzikální problémy vlivů teploty, vlhkosti, času… Většina prací má však i další nemalý význam, který spočívá v odhalování výstavbového principu, a tím i obecnějšího popisu nezávislého na lokálních hodnotách materiálových vlastností.

Dřevo je bezesporu spotřebním materiálem, na který jsme si zvykli dívat se jako na materiál homogenní a popisovat jeho chování tímto způsobem. Avšak rozmanitost, proměnlivost, a především obtíže, se kterými se lze setkat při jeho citlivějším a podrobnějším popisu, jej činí přinejmenším překvapivým, a tím snad i méně fádním. 5)

Literatura

Koňas P.: Parametric FE model of wood, Proceedings of 9. ANSYS Users’ meeting, Třešť 2001
Koňas P.: General concept of finite element model based on wood anatomy structure I, II, III, proceedings of MendelNET 01, ISBN: 80-7157-516-X, MZLU, Brno 2001

Obrázky

Poznámky

1) Titulní otázka je možná zavádějící, ale snažil jsem se vyjádřit paralelu mezi pravděpodobnostními modely struktury dřeva a nejjednodušším modelem pravděpodobnostního chování, totiž hrou v kostky. Cílem bylo zdůraznit význam přístupu „náhodného“ generování struktury (v rámci fyziologických možností dřeva) pro popis chování dřeva. Objekt svořitele byl zahrnut z důvodu vhodného aktivního účastníka (hybatele) této hry, které jsem se neodvážil přisoudit lidského aktéra.
2) Chemická definice: Dřevo je kompozit celulózy, hemicelulóz, ligninu, počtu extraktivních látek, sacharidů a jiných organických a anorganických látek (Doimo 1984). Anatomická definice: Dřevo (xylem) stromu je produktem kambia a skládá se z buněk či dřevních elementů, které prošly různými stadii vývoje. Všechny fáze vývoje buněčného dělení, diferenciace a dozrávání spolu dohromady vytvářejí strukturu dřeva (Larson 1969). Mechanistická definice: Dřevo je organický materiál s anizotropními vlastnostmi. (Bodig 1970).
3) Anizotropie – závislost fyzikálních vlastností látek na směru, ve kterém se měří.
4) Ortotropie – symetrie fyzikálních vlastností látek ve třech vzájemně kolmých rovinách.
5) Práce vznikla za podpory Ministerstva školství, mládeže a tělovýchovy ČR MSM 4341004. Za laskavé poskytnutí obrázků děkuji Ing. Javoříkovi a za užitečné připomínky Dr. Ing. Horáčkovi.

Popis chování dřeva


Přístupy modelování struktury dřeva jsou téměř tak rozmanité, jak rozmanitá je vlastní struktura dřeva. Rozmach výpočetní techniky umožňuje sice stále hlubší popis chování dřeva na stále menších rozměrech, avšak ať už jde o konkrétní přepis struktury či o algoritmizovatelnou sadu pravidel, model je jen více či méně dokonalou podobou reálné struktury, jejíž složitost je zatím stále mimo naše možnosti. Na druhou stranu jsou obrázky pouze malou ukázkou použitých přístupů, které mohou demonstrovat mnohem širší proměnlivost anatomické struktury v závislosti na zhrnutých detailech. Ty však mají především verifikační význam a v tomto příspěvku nemají místo.

Ke stažení

OBORY A KLÍČOVÁ SLOVA: Technické vědy

O autorovi

Petr Koňas

Ing. Petr Koňas (*1975) vystudoval Mendelovu zemědělskou a lesnickou univerzitu v Brně. Na této fakultě se v Ústavu nauky o dřevě zabývá konečněprvkovou simulací dřeva na různých úrovních homogenizace technologických procesů zpracování dřevní hmoty.

Doporučujeme

Se štírem na štíru

Se štírem na štíru

Daniel Frynta, Iveta Štolhoferová  |  4. 11. 2024
Člověk každý rok zabije kolem 80 milionů žraloků. Za stejnou dobu žraloci napadnou 80 lidí. Z tohoto srovnání je zřejmé, kdo by se měl koho bát,...
Ustrašená společnost

Ustrašená společnost uzamčeno

Jan Červenka  |  4. 11. 2024
Strach je přirozeným, evolucí vybroušeným obranným sebezáchovným mechanismem. Reagujeme jím na bezprostřední ohrožení, které nás připravuje buď na...
Mláďata na cizí účet

Mláďata na cizí účet uzamčeno

Martin Reichard  |  4. 11. 2024
Parazitismus je mezi živočichy jednou z hlavních strategií získávání zdrojů. Obvyklá představa parazitů jako malých organismů cizopasících na...