Zhmotněné světlo
E = mc2. Kdo by neznal notorickou Einsteinovu rovnici! Co je na ní tak fascinujícího, že se často objevuje na plakátech, na tričkách nebo v kreslených vtipech? Elegantní jednoduchost a snad i její význam – především vyjádření skutečnosti, že i tělesa v klidu mají ohromnou klidovou energii (rovnou klidové hmotnosti krát rychlost světla [3×108 m/s] na druhou) a že jsou možné přeměny hmoty na energii a naopak.
Přeměna hmoty na elektromagnetické záření je děj, který umožňuje naši existenci – fotony ze Slunce nám přinášejí životodárnou energii, jež pohání živý stroj Země. Zdrojem této energie je termojaderná reakce, která stojí Slunce 4 miliony tun hmoty každou sekundu.
Obvykle se při různých reakcích uvolňuje jen malá část klidové energie, ale existuje i děj, kdy se uvolní celá. Je to reakce částice s antičásticí, např. anihilace elektronu s pozitronem, při které vznikají fotony – částice elektromagnetického pole, které mají nulovou klidovou hmotnost.
Co však opačný děj: přeměna elektromagnetického záření na hmotné částice? Ano, i takový podivný děj zhmotnění nehmotného záření je možný. Teoretické modely s touto možností počítají, ale experimentální důkaz je velmi obtížný. Podala jej až loni skupina vědců kolem lineárního urychlovače Stanfordovy univerzity v Kalifornii (viz Physical Review Letters 79, 1626, 1997). Problém takového experimentu spočívá v získání fotonů dostatečné energie. Například pro vznik elektronu a pozitronu reakcí dvou fotonů
(děj, který poprvé popsali roku 1934 G. Breit a J. A. Wheeler) by fotony musely mít ohromnou energii – více než milionkrát větší než fotony viditelného světla – muselo by se tedy použít velmi energetické záření gama. Dostatečně intenzivní zdroje fotonů – lasery – jsou ovšem dostupné zatím pouze v ultrafialové oblasti spektra (rentgenové lasery teprve pomalu přicházejí na svět).
Jak problém vyřešili američtí vědci? Z urychlovače získali proud elektronů s vysokou energií (viz obrázek). Proti němu namířili soustředěný paprsek laseru (pulzní laser v zelené oblasti viditelného spektra s plošným výkonem 1018 W na cm2!). Některé fotony se srazily s elektrony (Comptonův rozptyl), získaly tím ohromnou energii a vyrazily proti proudu fotonů laseru. Pak stačilo, aby takový foton zreagoval se čtyřmi či více fotony laseru, a již bylo pohromadě dost energie k vytvoření elektron-pozitronového páru. Výsledný děj odpovídal schématu:
Detekce byla zajištěna vychýlením elektronů a pozitronů do opačných směrů v magnetickém poli. Vytvořené elektrony se od elektronů z urychlovače lišily malou pohybovou energií.
Současná experimentální fyzika tak opět prokázala své rostoucí schopnosti ověřovat zásadní děje, tvořící základy teoretických modelů fungování světa.
Ke stažení
- Článek ve formátu PDF [88,38 kB]