Aktuální číslo:

2024/4

Téma měsíce:

Obaly

Obálka čísla

„Modrá horečka“ v cílové rovince?

 |  5. 7. 1996
 |  Vesmír 75, 416, 1996/7

Pravděpodobně téměř každý z vás již viděl, či přímo používal, působivé laserové ukazovátko – tyčku velikosti tužky, která umožňuje během přednášky se zpětným projektorem nahradit klasické ukazovátko a z pohodlné vzdálenosti několika metrů jezdit jasným červeným bodem po projekční ploše. O tom, do jaké míry to zlepšuje přednášky, teď diskutovat nechceme; laserové ukazovátko nám mělo posloužit jen jako doklad masového rozšíření malých polovodičových laserů, jehož jsme byli svědky v posledním desetiletí. Dnešní nabídka sahá od miliwattových laserů pro CD přehrávače a snímače čárových kódů po vysokovýkonné soustavy laserových diod. Jsou vyrobeny ze slitin jako AlGaAs, AlGaInP apod. (tedy z prvků 3. a 5. skupiny Mendělejevovy tabulky, proto se jim říká III–V polovodiče) a vyzařují světlo infračervené nebo červené, vlnové délky od 1,55 m do 0,63 m. Mnoho zajímavých aplikací však vyžaduje posunout záření polovodičových laserů k co nejkratším vlnovým délkám, do zelené, modré až ultrafialové oblasti spektra. Modré laserové diody by například umožnily zvýšit hustotu optického záznamu informace až čtyřnásobně (nejmenší možné zaostření světelného paprsku je úměrné druhé mocnině vlnové délky) a podobně i maximální rozlišení laserových tiskáren, umožnily by sestavování plnobarevných a velmi jasných displejů a osvětlovačů. Když k tomu přidáme vojenské aplikace, dostáváme potenciální trh pro modré lasery v hodnotě 100 milionů dolarů a s příslušenstvím více než 100 miliard dolarů (Photonics Spectra, February 1996, str. 90–94). Není tedy divu, že – souběžně s lavinovitým rozšiřováním červených laserů – nastala v polovodičovém výzkumu (aplikovaném i základním) úplná „zlatá horečka“, hon za modrým laserem. Protože struktury ze zmíněných slitin typu AlGaInP nemohou principiálně poskytnout záření pod 620 nm, musely se hledat jiné možnosti. Hned od počátku se rozdělili badatelé (i bohaté finanční zdroje) do několika proudů hledajících nejkratší cestu k cíli.

Jedna z možností je postupovat nepřímo, tedy vytvářet modré světlo přeměnou infračerveného záření již existujících výkonných polovodičových laserů za pomoci nelineárních optických jevů: generace druhé harmonické frekvence (zdvojení optické frekvence, čili snížení vlnové délky na polovinu) nebo optické up-konverze. Po čase byly nalezeny vhodné nelineární materiály a nejvhodnější uspořádání součástek, takže dnes jsou tyto modré lasery poměrně účinné a začínají se vyrábět sériově. Zřejmě však uspokojí jen část praktických potřeb.

Hlavní úsilí se stále věnuje přímé generaci modrého laserového záření z polovodičových struktur. Pro tento účel se jevily jako nejnadějnější II–VI polovodiče a intenzivním výzkumem se skutečně podařilo vyvinout složité struktury ze slitin typu ZnMgSSe, poskytující zelené a modré laserové záření. Zásadním problémem je ovšem stabilita těchto materiálů. Průchodem elektrického proudu a zahřátím se v nich snadno tvoří defekty, které zničí součástku v nejlepším případě za několik hodin (pro komerční použití je nutná doba života součástky alespoň tisíce až miliony provozních hodin).

Nyní se však pro konstrukci modrého polovodičového laseru objevil nový favorit: galium nitrid – GaN, materiál mnohem odolnější než II–VI polovodiče. Pozornost na něj soustředila japonská společnost Nichia Chemical Industries, která po vytvoření modrých InGaN svítících diod r. 1993 oznámila loni v prosinci úspěšné zkonstruování modrého polovodičového laseru na bázi GaN. Opticky čerpaná emise GaN je známá už dvacet let, ale pro mnohé technické a technologické potíže nebyl považován za vhodného kandidáta pro polovodičové lasery. Po objevení nových technologických postupů se situace radikálně změnila. Modře a zeleně svítící diody z GaN, vyvinuté zmíněnou firmou zhruba před dvěma lety, se tam dnes vyrábějí v množství asi dvou milionů kusů za měsíc! Bude příchod modrých GaN laserů také tak rychlý? Mnozí odborníci soudí, že ano, že je to konečně ten pravý materiál, který dovede běh za modrým laserem do cílové rovinky. (Physics Today, April 1996, str. 18–20).

Těšme se tedy, že budeme moci zaznamenávat a přenášet ještě více informací a na přednáškách volit z celého spektra ukazovátek.

OBORY A KLÍČOVÁ SLOVA: Technické vědy
RUBRIKA: Aktuality

O autorovi

Jan Valenta

Doc. RNDr. Jan Valenta, PhD., (*1965) vystudoval Matematicko-fyzikálni fakultu UK v Praze, kde se nyní zabývá optickými vlastnostmi nanostruktur, spektroskopií jednotlivých molekul a polovodičových nanokrystalů a mj. také vývojem tandemových solárních článků. Je spoluautorem (s prof. Ivanem Pelantem) monografie Luminiscenční spektroskopie.

Doporučujeme

Přírodovědec v ekosystému vědní politiky

Přírodovědec v ekosystému vědní politiky uzamčeno

Josef Tuček  |  2. 4. 2024
Petr Baldrian vede Grantovou agenturu ČR – nejvýznamnější domácí instituci podporující základní výzkum s ročním rozpočtem 4,6 miliardy korun. Za...
Od krytí k uzavření rány

Od krytí k uzavření rány

Peter Gál, Robert Zajíček  |  2. 4. 2024
Popáleniny jsou v některých částech světa až třetí nejčastější příčinou neúmyslného zranění a úmrtí u malých dětí. Život výrazně ohrožují...
Česká seismologie na poloostrově Reykjanes

Česká seismologie na poloostrově Reykjanes s podporou

Jana Doubravová, Jakub Klicpera  |  2. 4. 2024
Island přitahuje návštěvníky nejen svou krásnou přírodou, ale také množstvím geologických zajímavostí, jako jsou horké prameny, gejzíry a aktivní...